-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMovie_Reviews.py
92 lines (66 loc) · 2.69 KB
/
Movie_Reviews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import tensorflow_estimator as tf
from tensorflow import keras
import numpy as np
data = keras.datasets.imdb
vocab_ size = 88000
classes = ['Negative', 'Positive']
(train_data, train_labels), (test_data, test_labels) = data.load_data(num_words=vocab_size)
word_index = data.get_word_index()
word_index = {k: (v + 3) for k, v in word_index.items()}
word_index['<PAD>'] = 0
word_index['<START>'] = 1
word_index['<UNK>'] = 2
word_index['<UNUSED>'] = 3
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index['<PAD>'], padding='post',
maxlen=250)
test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index['<PAD>'], padding='post',
maxlen=250)
def decode_review(text):
return " ".join([reverse_word_index.get(i, "?") for i in text])
'''
# model
model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
x_val = train_data[:10000]
x_train = train_data[10000:]
y_val = train_labels[:10000]
y_train = train_labels[10000:]
fitModel = model.fit(x_train, y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1)
results = model.evaluate(test_data, test_labels)
model.save('model.h5')
'''
def review_encode(s):
encoded = [1]
for word in s:
if word.lower() in word_index:
encoded.append(word_index[word.lower()])
else:
encoded.append(2)
return encoded
model = keras.models.load_model('model.h5')
with open('test.txt', encoding='utf-8') as f:
for line in f.readlines():
nline = line.replace(',', '').replace('.', '').replace('(', '').replace(')', '').replace(':', '').replace(
';', '').replace('\"', '').replace('\'', '').strip().split(" ")
encode = review_encode(nline)
encode = keras.preprocessing.sequence.pad_sequences([encode], value=word_index['<PAD>'], padding='post',
maxlen=250)
predict = model.predict(encode)
print(line)
print(predict[0])
'''
# testing
test_case = 66
test_review = test_data[test_case]
predict = model.predict([test_review])
print('Review: ')
print(decode_review(test_review))
print('Prediction: ' + classes[int(predict[test_case])])
print('Actual: ' + classes[int(test_labels[test_case])])
'''