Skip to content

Commit 1da34f8

Browse files
committed
Merge branch 'v205_cran'
2 parents a0e3265 + ce7b91d commit 1da34f8

File tree

135 files changed

+192
-9902
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

135 files changed

+192
-9902
lines changed

DESCRIPTION

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Package: ENMeval
22
Type: Package
33
Title: Automated Tuning and Evaluations of Ecological Niche Models
4-
Version: 2.0.5
5-
Date: 2024-12-14
4+
Version: 2.0.5.2
5+
Date: 2025-05-01
66
Authors@R: c(
77
person("Jamie M.","Kass", email = "[email protected]", role = c("aut","cre")),
88
person("Robert","Muscarella", role = "aut"),
@@ -14,9 +14,9 @@ Authors@R: c(
1414
person("Robert P.","Anderson", role = c("aut")))
1515
Maintainer: Jamie M. Kass <[email protected]>
1616
Description: Runs ecological niche models over all combinations of user-defined settings (i.e., tuning), performs cross validation to evaluate models, and returns data tables to aid in selection of optimal model settings that balance goodness-of-fit and model complexity. Also has functions to partition data spatially (or not) for cross validation, to plot multiple visualizations of results, to run null models to estimate significance and effect sizes of performance metrics, and to calculate range overlap between model predictions, among others. The package was originally built for Maxent models (Phillips et al. 2006, Phillips et al. 2017), but the current version allows possible extensions for any modeling algorithm. The extensive vignette, which guides users through most package functionality but unfortunately has a file size too big for CRAN, can be found here on the package's Github Pages website: <https://jamiemkass.github.io/ENMeval/articles/ENMeval-2.0-vignette.html>.
17-
License: file LICENSE
17+
License: GPL-3
1818
Encoding: UTF-8
19-
Depends: methods, R (>= 3.5.0)
19+
Depends: methods, R (>= 4.1.0)
2020
Imports:
2121
terra,
2222
maxnet,
@@ -49,5 +49,4 @@ Suggests:
4949
ecospat,
5050
geodata,
5151
usdm
52-
VignetteBuilder: knitr
5352
URL: https://jamiemkass.github.io/ENMeval/

ENMeval.Rproj

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Version: 1.0
2-
ProjectId: 9e305864-7f20-4c45-afc9-1414e3c271f9
2+
ProjectId: 906253b9-3779-4435-afd3-64b028824978
33

44
RestoreWorkspace: Default
55
SaveWorkspace: Default
@@ -16,6 +16,3 @@ LaTeX: pdfLaTeX
1616
BuildType: Package
1717
PackageUseDevtools: Yes
1818
PackageInstallArgs: --no-multiarch --with-keep.source
19-
PackageBuildArgs: --no-build-vignettes
20-
PackageBuildBinaryArgs: --no-build-vignettes
21-
PackageCheckArgs: --ignore-vignettes

LICENSE

Lines changed: 0 additions & 674 deletions
This file was deleted.

NEWS

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,13 @@
1+
ENMeval 2.0.5.2
2+
===========
3+
o Fixed an error in maxnet.predictRaster that resulted in ignoring categorical variables when making predictions. This happened because terra::values was converting the cateogrical values to numeric, and the maxnet model had them specified as categorical, so they were ignored. For maxent.jar models, they are specified internally as numeric, unlike for maxnet.
4+
o Fixed a small error that resulted in conversion of categorical variable values to numeric for maxnet models for AICc calculation. This conversion was meant only for maxent.jar models, but it should not have affected AIC calculations.
5+
o Added a note about the validation.bg option in the documentation for ENMevaluate.
6+
7+
ENMeval 2.0.5.1
8+
===========
9+
o Fixed a typo in maxnet.predictRaster.
10+
111
ENMeval 2.0.5
212
===========
313
* This one is kind of a big update, making the switch to terra and predicts*

R/ENMevaluate.R

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,8 @@
8787
#' 1. By default, validation AUC is calculated with respect to the full background (training + validation).
8888
#' This approach follows Radosavljevic & Anderson (2014).This setting can be changed by assigning
8989
#' other.settings$validation.bg to "partition", which will calculate AUC with respect
90-
#' to the validation background only. The default value for other.settings$validation.bg is "full".
90+
#' to the validation background only. The default value for other.settings$validation.bg is "full".
91+
9192
#' NOTE: When examining validation AUC and other discrimination metrics, the "full" option will likely
9293
#' result in higher performance than for the "partition" option because more and varied background data
9394
#' should lead to higher discriminatory power for the model. Users should thus make sure they are correctly

R/ENMnulls.R

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -61,9 +61,9 @@
6161
#' species distributions. \emph{Journal of Biogeography}, \bold{46}: 1101-1111.
6262
#' \doi{10.1111/jbi.13573}
6363
#'
64-
#' Kass, J. M., Anderson, R. P., Espinosa-Lucas, A., Juárez-Jaimes, V.,
65-
#' Martínez-Salas, E., Botello, F., Tavera, G., Flores-Martínez, J. J., &
66-
#' Sánchez-Cordero, V. (2020). Biotic predictors with phenological information
64+
#' Kass, J. M., Anderson, R. P., Espinosa-Lucas, A., Juarez-Jaimes, V.,
65+
#' Martinez-Salas, E., Botello, F., Tavera, G., Flores-Martinez, J. J., &
66+
#' Sanchez-Cordero, V. (2020). Biotic predictors with phenological information
6767
#' improve range estimates for migrating monarch butterflies in Mexico.
6868
#' \emph{Ecography}, \bold{43}: 341-352. \doi{10.1111/ecog.04886}
6969
#'

R/classes.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ NULL
5656
#'
5757
#' Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. \emph{Environmental Conservation}, \bold{24}: 38-49. \doi{10.1017/S0376892997000088}
5858
#'
59-
#' Jiménez‐Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. \emph{Global Ecology and Biogeography}, \bold{21}: 498-507. \doi{10.1111/j.1466-8238.2011.00683.x}
59+
#' Jimenez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. \emph{Global Ecology and Biogeography}, \bold{21}: 498-507. \doi{10.1111/j.1466-8238.2011.00683.x}
6060
#'
6161
#' \emph{AUC diff}
6262
#'

R/enm.maxnet.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ maxnet.args <- function(occs.z, bg.z, tune.tbl.i, other.settings) {
4848
}
4949

5050
maxnet.predict <- function(mod, envs, other.settings) {
51-
requireNamespace("maxnet", quitely = TRUE)
51+
requireNamespace("maxnet", quietly = TRUE)
5252
# function to generate a prediction Raster* when raster data is specified as envs,
5353
# and a prediction data frame when a data frame is specified as envs
5454
if(inherits(envs, "SpatRaster") == TRUE) {

R/partitions.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@
5151
#' @references
5252
#' Hijmans, R. J. (2023). terra: Spatial Data Analysis. Available online at: \url{https://cran.r-project.org/package=terra}.
5353
#'
54-
#' Muscarella, R., Galante, P. J., SoleyGuardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. \emph{Methods in Ecology and Evolution}, 5(11), 1198-1205. \doi{https://doi.org/10.1111/2041-210X.12945}
54+
#' Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. \emph{Methods in Ecology and Evolution}, 5(11), 1198-1205. \doi{10.1111/2041-210X.12945}
5555
#'
5656
#' Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. \emph{Journal of Biogeography}, \bold{34}: 102-117. \doi{10.1111/j.1365-2699.2006.01594.x}
5757
#'

R/rmaxnet_parse_lambdas.r

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,9 @@
3030
#' @importFrom methods is
3131
#' @importFrom utils count.fields
3232
#' @importFrom stats setNames
33-
#' @export
33+
#'
3434
#' @examples
35+
#' \dontrun{
3536
#' # Below we use the predicts::MaxEnt example to fit a model:
3637
#' library(predicts)
3738
#' occs <- read.csv(file.path(system.file(package="predicts"),
@@ -42,6 +43,8 @@
4243
#' lam <- parse_lambdas(me)
4344
#' lam
4445
#' str(lam, 1)
46+
#' }
47+
#' @export
4548

4649
parse_lambdas <- function(lambdas) {
4750
if(methods::is(lambdas, 'MaxEnt_model')) {

0 commit comments

Comments
 (0)