|
| 1 | +# LDU factorization for unsymmetric systems |
| 2 | + |
| 3 | +function ldu_factorization_acyclic!(diagonal_v, offdiagonal_l, diagonal_c, offdiagonal_u, diagonal_inverse_c) |
| 4 | + if diagonal_inverse_c.isinverted |
| 5 | + invdiagonal_c = diagonal_inverse_c.value |
| 6 | + else |
| 7 | + invdiagonal_c = inv(diagonal_c.value) |
| 8 | + diagonal_inverse_c.value = invdiagonal_c |
| 9 | + diagonal_inverse_c.isinverted = true |
| 10 | + end |
| 11 | + offdiagonal_l.value = offdiagonal_l.value * invdiagonal_c |
| 12 | + offdiagonal_u.value = invdiagonal_c * offdiagonal_u.value |
| 13 | + diagonal_v.value -= offdiagonal_l.value*diagonal_c.value*offdiagonal_u.value |
| 14 | + return |
| 15 | +end |
| 16 | +function ldu_factorization_cyclic!(entry_lu, offdiagonal_lu, diagonal_c, offdiagonal_ul) |
| 17 | + entry_lu.value -= offdiagonal_lu.value*diagonal_c.value*offdiagonal_ul.value |
| 18 | + return |
| 19 | +end |
| 20 | + |
| 21 | +function ldu_factorization!(system) |
| 22 | + matrix_entries = system.matrix_entries |
| 23 | + diagonal_inverses = system.diagonal_inverses |
| 24 | + acyclic_children = system.acyclic_children |
| 25 | + cycles = system.cycles |
| 26 | + |
| 27 | + for v in system.dfs_list |
| 28 | + for cyclic_children in cycles[v] |
| 29 | + for c in cyclic_children |
| 30 | + for cc in cyclic_children |
| 31 | + cc == c && break |
| 32 | + cc ∉ acyclic_children[c] && continue |
| 33 | + ldu_factorization_cyclic!(matrix_entries[v,c], matrix_entries[v,cc], matrix_entries[cc,cc], matrix_entries[cc,c]) |
| 34 | + ldu_factorization_cyclic!(matrix_entries[c,v], matrix_entries[c,cc], matrix_entries[cc,cc], matrix_entries[cc,v]) |
| 35 | + end |
| 36 | + ldu_factorization_acyclic!(matrix_entries[v,v], matrix_entries[v,c], matrix_entries[c,c], matrix_entries[c,v], diagonal_inverses[c]) |
| 37 | + end |
| 38 | + end |
| 39 | + for c in acyclic_children[v] |
| 40 | + ldu_factorization_acyclic!(matrix_entries[v,v], matrix_entries[v,c], matrix_entries[c,c], matrix_entries[c,v], diagonal_inverses[c]) |
| 41 | + end |
| 42 | + end |
| 43 | + return |
| 44 | +end |
| 45 | + |
| 46 | +function ldu_backsubstitution_l!(vector_v, offdiagonal, vector_c) |
| 47 | + vector_v.value -= offdiagonal.value*vector_c.value |
| 48 | + return |
| 49 | +end |
| 50 | +function ldu_backsubstitution_u!(vector_v, offdiagonal, vector_p) |
| 51 | + vector_v.value -= offdiagonal.value*vector_p.value |
| 52 | + return |
| 53 | +end |
| 54 | +function ldu_backsubstitution_d!(vector, diagonal, diagonal_inverse) |
| 55 | + if diagonal_inverse.isinverted |
| 56 | + vector.value = diagonal_inverse.value*vector.value |
| 57 | + else |
| 58 | + vector.value = diagonal.value\vector.value |
| 59 | + end |
| 60 | + diagonal_inverse.isinverted = false |
| 61 | + return |
| 62 | +end |
| 63 | + |
| 64 | +function ldu_backsubstitution!(system) |
| 65 | + matrix_entries = system.matrix_entries |
| 66 | + diagonal_inverses = system.diagonal_inverses |
| 67 | + vector_entries = system.vector_entries |
| 68 | + acyclic_children = system.acyclic_children |
| 69 | + cycles = system.cycles |
| 70 | + parents = system.parents |
| 71 | + dfs_list = system.dfs_list |
| 72 | + |
| 73 | + for v in dfs_list |
| 74 | + for cyclic_children in cycles[v] |
| 75 | + for c in cyclic_children |
| 76 | + ldu_backsubstitution_l!(vector_entries[v], matrix_entries[v,c], vector_entries[c]) |
| 77 | + end |
| 78 | + end |
| 79 | + for c in acyclic_children[v] |
| 80 | + ldu_backsubstitution_l!(vector_entries[v], matrix_entries[v,c], vector_entries[c]) |
| 81 | + end |
| 82 | + end |
| 83 | + for v in reverse(dfs_list) |
| 84 | + ldu_backsubstitution_d!(vector_entries[v], matrix_entries[v,v], diagonal_inverses[v]) |
| 85 | + for p in parents[v] |
| 86 | + ldu_backsubstitution_u!(vector_entries[v], matrix_entries[v,p], vector_entries[p]) |
| 87 | + end |
| 88 | + end |
| 89 | +end |
| 90 | + |
| 91 | +function ldu_solve!(system) |
| 92 | + ldu_factorization!(system) |
| 93 | + ldu_backsubstitution!(system) |
| 94 | + return |
| 95 | +end |
0 commit comments