Skip to content

Commit 1293330

Browse files
Qazalbashjanosh
andauthored
GWKokab a parameter estimation package in domain of astrophysics (#68)
* gwkokab a parameter estimation for models in astrophysics * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix 2 dead links https://pnas.org/doi/10.1073/pnas.2109420119 → Status: 403 [✖] https://flowtorch.ai → Status: 404 * add https://doi.org/10.1073/pnas.2109420119 to .github/workflows/link-check-config.json ignorePatterns * revert to numbered ToC --------- Co-authored-by: Janosh Riebesell <[email protected]>
1 parent f6e4c6b commit 1293330

File tree

5 files changed

+40
-21
lines changed

5 files changed

+40
-21
lines changed

.github/workflows/link-check-config.json

+4
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,10 @@
55
"pattern": "^#",
66
"comment": "ignore links starting with a dash (those in the readme's ToC)"
77
},
8+
{
9+
"pattern": "https://doi.org/10.1073/pnas.2109420119",
10+
"comment": "status 403 in CI but works in browser"
11+
},
812
{
913
"pattern": "^https://twitter.com",
1014
"comment": "Twitter seems to block bot requests, getting a lot of 404s"

.pre-commit-config.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ default_install_hook_types: [pre-commit, commit-msg]
77

88
repos:
99
- repo: https://github.com/astral-sh/ruff-pre-commit
10-
rev: v0.4.10
10+
rev: v0.6.6
1111
hooks:
1212
- id: ruff
1313
args:

data/packages.yml

+11-2
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,7 @@
2020
authors: Facebook / Meta
2121
authors_url: https://opensource.fb.com
2222
lang: PyTorch
23-
description: |
24-
[FlowTorch Docs](https://flowtorch.ai) is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
23+
description: FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using Normalizing Flows.
2524

2625
- title: TensorFlow Probability
2726
date: 2018-06-22
@@ -122,3 +121,13 @@
122121
lang: JAX
123122
docs: https://flowmc.readthedocs.io/en/main/
124123
description: Normalizing-flow enhanced sampling package for probabilistic inference
124+
125+
- title: GWKokab
126+
date: 2024-07-05
127+
date_added: 2024-09-21
128+
last_updated: 2024-09-21
129+
url: https://github.com/gwkokab/gwkokab
130+
authors: Meesum Qazalbash, Muhammad Zeeshan, Richard O'Shaughnessy
131+
lang: JAX
132+
docs: https://gwkokab.readthedocs.io
133+
description: A JAX-based gravitational-wave population inference toolkit for parametric models

data/publications.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -399,7 +399,7 @@
399399
description: Normalizing flows have potential in Bayesian statistics as a complementary or alternative method to MCMC for sampling posteriors. However, their training via reverse KL divergence may be inadequate for complex posteriors. This research proposes a new training approach utilizing direct KL divergence, which involves augmenting a local MCMC algorithm with a normalizing flow to enhance mixing rate and utilizing the resulting samples to train the flow. This method requires minimal prior knowledge of the posterior and can be applied for model validation and evidence estimation, offering a promising strategy for efficient posterior sampling.
400400

401401
- title: Adaptive Monte Carlo augmented with normalizing flows
402-
url: https://pnas.org/doi/10.1073/pnas.2109420119
402+
url: https://doi.org/10.1073/pnas.2109420119
403403
date: 2022-03-02
404404
authors: Marylou Gabrié, Grant M. Rotskoff, Eric Vanden-Eijnden
405405
description: Markov Chain Monte Carlo (MCMC) algorithms struggle with sampling from high-dimensional, multimodal distributions, requiring extensive computational effort or specialized importance sampling strategies. To address this, an adaptive MCMC approach is proposed, combining local updates with nonlocal transitions via normalizing flows. This method blends standard transition kernels with generative model moves, adapting the generative model using generated data to improve sampling efficiency. Theoretical analysis and numerical experiments demonstrate the algorithm's ability to equilibrate quickly between metastable modes, sampling effectively across large free energy barriers and achieving significant accelerations over traditional MCMC methods.

readme.md

+23-17
Original file line numberDiff line numberDiff line change
@@ -26,20 +26,21 @@ A list of awesome resources for understanding and applying normalizing flows (NF
2626

2727
## <img src="assets/toc.svg" alt="Contents" height="18px"> &nbsp;Table of Contents
2828

29-
1. [📝 Publications](#-publications-60)
30-
1. [🛠️ Applications](#️-applications-8)
31-
1. [📺 Videos](#-videos-8)
32-
1. [📦 Packages](#-packages-14)
33-
1. [<img src="assets/pytorch.svg" alt="PyTorch" height="20px"> &nbsp;PyTorch Packages](#-pytorch-packages)
34-
1. [<img src="assets/tensorflow.svg" alt="TensorFlow" height="20px"> &nbsp;TensorFlow Packages](#-tensorflow-packages)
35-
1. [<img src="assets/jax.svg" alt="JAX" height="15px"> &nbsp;JAX Packages](#-jax-packages)
36-
1. [<img src="assets/julia.svg" alt="Julia" height="15px"> &nbsp;Julia Packages](#-julia-packages)
37-
1. [🧑‍💻 Repos](#-repos-18)
38-
1. [<img src="assets/pytorch.svg" alt="PyTorch" height="20px"> &nbsp;PyTorch Repos](#-pytorch-repos)
39-
1. [<img src="assets/jax.svg" alt="JAX" height="15px"> &nbsp;JAX Repos](#-jax-repos)
40-
1. [<img src="assets/tensorflow.svg" alt="TensorFlow" height="20px"> &nbsp;TensorFlow Repos](#-tensorflow-repos)
41-
1. [<img src="assets/other.svg" alt="Other" height="15px"> &nbsp;Other Repos](#-other-repos)
42-
1. [🌐 Blog Posts](#-blog-posts-5)
29+
1. [Table of Contents](#-table-of-contents)
30+
1. [📝 Publications (60)](#-publications-60)
31+
1. [🛠️ Applications (8)](#️-applications-8)
32+
1. [📺 Videos (8)](#-videos-8)
33+
1. [📦 Packages (15)](#-packages-15)
34+
1. [PyTorch Packages](#-pytorch-packages)
35+
1. [TensorFlow Packages](#-tensorflow-packages)
36+
1. [JAX Packages](#-jax-packages)
37+
1. [Julia Packages](#-julia-packages)
38+
1. [🧑‍💻 Repos (18)](#-repos-18)
39+
1. [PyTorch Repos](#-pytorch-repos)
40+
1. [TensorFlow Repos](#-tensorflow-repos)
41+
1. [JAX Repos](#-jax-repos)
42+
1. [Other Repos](#-other-repos)
43+
1. [🌐 Blog Posts (5)](#-blog-posts-5)
4344
1. [🚧 Contributing](#-contributing)
4445

4546
<br>
@@ -64,7 +65,7 @@ A list of awesome resources for understanding and applying normalizing flows (NF
6465
1. 2022-05-16 - [Multi-scale Attention Flow for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2205.07493) by Feng, Xu et al.<br>
6566
Proposes a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF), where one integrates multi-scale attention and relative position information and the multivariate data distribution is represented by the conditioned normalizing flow.
6667

67-
1. 2022-03-02 - [Adaptive Monte Carlo augmented with normalizing flows](https://pnas.org/doi/10.1073/pnas.2109420119) by Gabrié, Rotskoff et al.<br>
68+
1. 2022-03-02 - [Adaptive Monte Carlo augmented with normalizing flows](https://doi.org/10.1073/pnas.2109420119) by Gabrié, Rotskoff et al.<br>
6869
Markov Chain Monte Carlo (MCMC) algorithms struggle with sampling from high-dimensional, multimodal distributions, requiring extensive computational effort or specialized importance sampling strategies. To address this, an adaptive MCMC approach is proposed, combining local updates with nonlocal transitions via normalizing flows. This method blends standard transition kernels with generative model moves, adapting the generative model using generated data to improve sampling efficiency. Theoretical analysis and numerical experiments demonstrate the algorithm's ability to equilibrate quickly between metastable modes, sampling effectively across large free energy barriers and achieving significant accelerations over traditional MCMC methods. [[Code](https://zenodo.org/records/4783701#.Yfv53urMJD8)]
6970

7071
1. 2022-01-14 - [E(n) Equivariant Normalizing Flows](https://arxiv.org/abs/2105.09016) by Satorras, Hoogeboom et al.<br>
@@ -307,7 +308,7 @@ A list of awesome resources for understanding and applying normalizing flows (NF
307308

308309
<br>
309310

310-
## 📦 Packages <small>(14)</small>
311+
## 📦 Packages <small>(15)</small>
311312

312313
<br>
313314

@@ -328,7 +329,7 @@ Zuko is used in [LAMPE](https://github.com/francois-rozet/lampe) to enable Likel
328329
1. 2020-12-07 - [flowtorch](https://github.com/facebookincubator/flowtorch) by [Facebook / Meta](https://opensource.fb.com)
329330
&ensp;
330331
<img src="https://img.shields.io/github/stars/facebookincubator/flowtorch" alt="GitHub repo stars" valign="middle" /><br>
331-
[FlowTorch Docs](https://flowtorch.ai) is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
332+
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using Normalizing Flows.
332333

333334
1. 2020-02-09 - [nflows](https://github.com/bayesiains/nflows) by [Bayesiains](https://homepages.inf.ed.ac.uk/imurray2/group)
334335
&ensp;
@@ -358,6 +359,11 @@ Zuko is used in [LAMPE](https://github.com/francois-rozet/lampe) to enable Likel
358359

359360
### <img src="assets/jax.svg" alt="JAX" height="20px"> &nbsp;JAX Packages
360361

362+
1. 2024-07-05 - [GWKokab](https://github.com/gwkokab/gwkokab) by Meesum Qazalbash, Muhammad Zeeshan et al.
363+
&ensp;
364+
<img src="https://img.shields.io/github/stars/gwkokab/gwkokab" alt="GitHub repo stars" valign="middle" /><br>
365+
A JAX-based gravitational-wave population inference toolkit for parametric models [[Docs](https://gwkokab.readthedocs.io)]
366+
361367
1. 2022-06-17 - [flowMC](https://github.com/kazewong/flowMC) by [Kaze Wong](https://www.kaze-wong.com/)
362368
&ensp;
363369
<img src="https://img.shields.io/github/stars/kazewong/flowMC" alt="GitHub repo stars" valign="middle" /><br>

0 commit comments

Comments
 (0)