Skip to content

Commit badbd2f

Browse files
committed
bump pre-commit hooks and update links to diagrams repo
1 parent 97732d7 commit badbd2f

File tree

3 files changed

+29
-29
lines changed

3 files changed

+29
-29
lines changed

.pre-commit-config.yaml

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
11
ci:
22
autoupdate_schedule: quarterly
33

4-
default_stages: [commit]
4+
default_stages: [pre-commit]
55

66
default_install_hook_types: [pre-commit, commit-msg]
77

88
repos:
99
- repo: https://github.com/astral-sh/ruff-pre-commit
10-
rev: v0.6.7
10+
rev: v0.9.4
1111
hooks:
1212
- id: ruff
1313
args:
@@ -21,7 +21,7 @@ repos:
2121
- id: ruff-format
2222

2323
- repo: https://github.com/pre-commit/pre-commit-hooks
24-
rev: v4.6.0
24+
rev: v5.0.0
2525
hooks:
2626
- id: check-case-conflict
2727
- id: check-symlinks
@@ -34,7 +34,7 @@ repos:
3434
- id: trailing-whitespace
3535

3636
- repo: https://github.com/igorshubovych/markdownlint-cli
37-
rev: v0.42.0
37+
rev: v0.44.0
3838
hooks:
3939
- id: markdownlint
4040
# MD013: line length
@@ -43,14 +43,14 @@ repos:
4343
args: [--disable, MD013, MD033, MD041, "--"]
4444

4545
- repo: https://github.com/codespell-project/codespell
46-
rev: v2.3.0
46+
rev: v2.4.1
4747
hooks:
4848
- id: codespell
49-
stages: [commit, commit-msg]
49+
stages: [pre-commit, commit-msg]
5050
args: [--ignore-words-list, gool, --check-filenames]
5151

5252
- repo: https://github.com/google/yamlfmt
53-
rev: v0.13.0
53+
rev: v0.15.0
5454
hooks:
5555
- id: yamlfmt
5656
args: [-formatter, retain_line_breaks=true]

data/publications.yml

+9-9
Original file line numberDiff line numberDiff line change
@@ -29,10 +29,10 @@
2929
3030
A popular and efficient way to make flows autoregressive is to construct them from MADE nets.
3131
32-
<a href="https://github.com/janosh/tikz/tree/main/assets/made">
32+
<a href="https://github.com/janosh/diagrams/tree/main/assets/made">
3333
<picture>
34-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/made/made-white.svg">
35-
<img alt="Masked Autoencoder for Distribution Estimation" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/made/made.svg">
34+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/made/made-white.svg">
35+
<img alt="Masked Autoencoder for Distribution Estimation" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/made/made.svg">
3636
</picture>
3737
</a>
3838
@@ -54,10 +54,10 @@
5454
description: |
5555
They introduce the affine coupling layer (RNVP), a major improvement in terms of flexibility over the additive coupling layer (NICE) with unit Jacobian while keeping a single-pass forward and inverse transformation for fast sampling and density estimation, respectively.
5656
57-
<a href="https://github.com/janosh/tikz/tree/main/assets/rnvp">
57+
<a href="https://github.com/janosh/diagrams/tree/main/assets/rnvp">
5858
<picture>
59-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/rnvp/rnvp-white.svg">
60-
<img alt="Diagram of real-valued non-volume preserving (RNVP) coupling layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/rnvp/rnvp.svg">
59+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/rnvp/rnvp-white.svg">
60+
<img alt="Diagram of real-valued non-volume preserving (RNVP) coupling layer" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/rnvp/rnvp.svg">
6161
</picture>
6262
</a>
6363
@@ -92,10 +92,10 @@
9292
description: |
9393
Introduces MAF, a stack of autoregressive models forming a normalizing flow suitable for fast density estimation but slow at sampling. Analogous to Inverse Autoregressive Flow (IAF) except the forward and inverse passes are exchanged. Generalization of RNVP.
9494
95-
<a href="https://github.com/janosh/tikz/tree/main/assets/maf">
95+
<a href="https://github.com/janosh/diagrams/tree/main/assets/maf">
9696
<picture>
97-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/maf/maf-white.svg">
98-
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/maf/maf.svg">
97+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/maf/maf-white.svg">
98+
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/maf/maf.svg">
9999
</picture>
100100
</a>
101101

readme.md

+13-13
Original file line numberDiff line numberDiff line change
@@ -13,14 +13,14 @@
1313

1414
A list of awesome resources for understanding and applying normalizing flows (NF): a relatively simple yet powerful new tool in statistics for constructing expressive probability distributions from simple base distributions using a chain (flow) of trainable smooth bijective transformations (diffeomorphisms).
1515

16-
<a href="https://github.com/janosh/tikz/tree/main/assets/normalizing-flow">
16+
<a href="https://github.com/janosh/diagrams/tree/main/assets/normalizing-flow">
1717
<picture>
18-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/normalizing-flow/normalizing-flow-white.svg">
19-
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/normalizing-flow/normalizing-flow.svg">
18+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/normalizing-flow/normalizing-flow-white.svg">
19+
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/normalizing-flow/normalizing-flow.svg">
2020
</picture>
2121
</a>
2222

23-
<sup>_Figure inspired by [Lilian Weng](https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models). Created in TikZ. [View source](https://github.com/janosh/tikz/tree/main/assets/normalizing-flow)._</sup>
23+
<sup>_Figure inspired by [Lilian Weng](https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models). Created in [CeTZ](https://cetz-package.github.io). [View source](https://github.com/janosh/diagrams/blob/main/assets/normalizing-flow/normalizing-flow.typ)._</sup>
2424

2525
<br>
2626

@@ -206,10 +206,10 @@ A list of awesome resources for understanding and applying normalizing flows (NF
206206
1. 2017-05-19 - [Masked Autoregressive Flow for Density Estimation](https://arxiv.org/abs/1705.07057) by Papamakarios, Pavlakou et al.<br>
207207
Introduces MAF, a stack of autoregressive models forming a normalizing flow suitable for fast density estimation but slow at sampling. Analogous to Inverse Autoregressive Flow (IAF) except the forward and inverse passes are exchanged. Generalization of RNVP.
208208

209-
<a href="https://github.com/janosh/tikz/tree/main/assets/maf">
209+
<a href="https://github.com/janosh/diagrams/tree/main/assets/maf">
210210
<picture>
211-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/maf/maf-white.svg">
212-
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/maf/maf.svg">
211+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/maf/maf-white.svg">
212+
<img alt="Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/maf/maf.svg">
213213
</picture>
214214
</a>
215215

@@ -222,10 +222,10 @@ A list of awesome resources for understanding and applying normalizing flows (NF
222222
1. 2016-05-27 - [Density estimation using Real NVP](https://arxiv.org/abs/1605.08803) by Dinh, Sohl-Dickstein et al.<br>
223223
They introduce the affine coupling layer (RNVP), a major improvement in terms of flexibility over the additive coupling layer (NICE) with unit Jacobian while keeping a single-pass forward and inverse transformation for fast sampling and density estimation, respectively.
224224

225-
<a href="https://github.com/janosh/tikz/tree/main/assets/rnvp">
225+
<a href="https://github.com/janosh/diagrams/tree/main/assets/rnvp">
226226
<picture>
227-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/rnvp/rnvp-white.svg">
228-
<img alt="Diagram of real-valued non-volume preserving (RNVP) coupling layer" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/rnvp/rnvp.svg">
227+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/rnvp/rnvp-white.svg">
228+
<img alt="Diagram of real-valued non-volume preserving (RNVP) coupling layer" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/rnvp/rnvp.svg">
229229
</picture>
230230
</a>
231231

@@ -237,10 +237,10 @@ A list of awesome resources for understanding and applying normalizing flows (NF
237237

238238
A popular and efficient way to make flows autoregressive is to construct them from MADE nets.
239239

240-
<a href="https://github.com/janosh/tikz/tree/main/assets/made">
240+
<a href="https://github.com/janosh/diagrams/tree/main/assets/made">
241241
<picture>
242-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/tikz/main/assets/made/made-white.svg">
243-
<img alt="Masked Autoencoder for Distribution Estimation" src="https://raw.githubusercontent.com/janosh/tikz/main/assets/made/made.svg">
242+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/janosh/diagrams/main/assets/made/made-white.svg">
243+
<img alt="Masked Autoencoder for Distribution Estimation" src="https://raw.githubusercontent.com/janosh/diagrams/main/assets/made/made.svg">
244244
</picture>
245245
</a>
246246

0 commit comments

Comments
 (0)