forked from charlesmartin14/emf-rbm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbm_datasets.py
851 lines (709 loc) · 29.6 KB
/
rbm_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
from __future__ import print_function
import numpy as np
import pickle as pkl
from compat import pickle as cPkl
import matplotlib as mpl
from matplotlib import pyplot as plt
import gzip, zipfile, tarfile
import os, shutil, re, string, urllib, fnmatch
from scipy.io import loadmat
def show_image(image):
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
imgplot = ax.imshow(image, cmap=mpl.cm.Greys)
imgplot.set_interpolation('nearest')
ax.xaxis.set_ticks_position('top')
ax.yaxis.set_ticks_position('left')
plt.show()
def _get_datafolder_path():
full_path = os.path.abspath('.')
path = full_path +'/data'
return path
def _unpickle(f):
fo = open(f, 'rb')
d = cPkl.load(fo)
fo.close()
return d
def _download_frey_faces(dataset):
"""
Download the Frey Faces dataset if it is not present.
:return: The train, test and validation set.
"""
origin = (
'http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat'
)
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset+'.mat')
matdata = loadmat(dataset)
f = gzip.open(dataset +'.pkl.gz', 'w')
pkl.dump([matdata['ff'].T],f)
def _download_caltech(dataset):
"""
Download the Caltech Silhouettes dataset if it is not present.
:return: The train, test and validation set.
"""
origin = (
'https://people.cs.umass.edu/~marlin/data/caltech101_silhouettes_28_split1.mat'
)
print('Downloading data from %s' % origin)
print('dataset.mat %s' % dataset)
urllib.urlretrieve(origin, dataset)
matdata = loadmat(dataset)
print("keys ", matdata.keys())
train_x = matdata['train_data'].astype('float32')
train_y = matdata['train_labels'].astype('int')
valid_x = matdata['val_data'].astype('float32')
valid_y = matdata['val_labels'].astype('int')
test_x = matdata['test_data'].astype('float32')
test_y = matdata['test_labels'].astype('int')
print(train_x.shape, train_y.shape, valid_x.shape,
valid_y.shape, test_x.shape, test_y.shape)
with open(dataset +'.pkl', 'w') as f:
pkl.dump([train_x, train_y, valid_x, valid_y, test_x, test_y],
f, protocol=cPkl.HIGHEST_PROTOCOL)
def _download_mnist_realval(dataset):
"""
Download the MNIST dataset if it is not present.
:return: The train, test and validation set.
"""
origin = (
'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
)
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset)
def _download_omniglot_iwae(dataset):
"""
Download the Omniglot dataset if it is not present.
:return: The train, test and validation set.
"""
origin = (
'https://github.com/yburda/iwae/raw/'
'master/datasets/OMNIGLOT/chardata.mat'
)
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset + '/chardata.mat')
def _download_norb_small(dataset):
"""
Download the Norb dataset
"""
print('Downloading small resized norb data')
urllib.urlretrieve('http://dl.dropbox.com/u/13294233/smallnorb/smallnorb-'
'5x46789x9x18x6x2x32x32-training-dat-matlab-bicubic.mat',
dataset + '/smallnorb_train_x.mat')
urllib.urlretrieve('http://dl.dropbox.com/u/13294233/smallnorb/smallnorb-'
'5x46789x9x18x6x2x96x96-training-cat-matlab.mat',
dataset + '/smallnorb_train_t.mat')
urllib.urlretrieve('http://dl.dropbox.com/u/13294233/smallnorb/smallnorb-'
'5x01235x9x18x6x2x32x32-testing-dat-matlab-bicubic.mat',
dataset + '/smallnorb_test_x.mat')
urllib.urlretrieve('http://dl.dropbox.com/u/13294233/smallnorb/smallnorb-'
'5x01235x9x18x6x2x96x96-testing-cat-matlab.mat',
dataset + '/smallnorb_test_t.mat')
data = loadmat(dataset + '/smallnorb_train_x.mat')['traindata']
train_x = np.concatenate([data[:,0,:].T, data[:,0,:].T]).astype('float32')
data = loadmat(dataset + '/smallnorb_train_t.mat')
train_t = data['trainlabels'].flatten().astype('float32')
train_t = np.concatenate([train_t, train_t])
data = loadmat(dataset + '/smallnorb_test_x.mat')['testdata']
test_x = np.concatenate([data[:,0,:].T, data[:,0,:].T]).astype('float32')
data = loadmat(dataset + '/smallnorb_test_t.mat')
test_t = data['testlabels'].flatten().astype('float32')
test_t = np.concatenate([test_t, test_t])
with open(dataset+'/norbsmall32x32.cpkl','w') as f:
cPkl.dump([train_x, train_t, test_x, test_t], f,
protocol=cPkl.HIGHEST_PROTOCOL)
def _download_rotten_tomatoes(dataset):
origin = ('http://www.cs.cornell.edu/people/pabo/'
'movie-review-data/rt-polaritydata.tar.gz')
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset + '/rt-polaritydata.tar.gz')
def load_norb_small(
dataset=_get_datafolder_path()+'/norb_small/norbsmall32x32.cpkl',
dequantify=True,
normalize=True ):
'''
Loads the real valued MNIST dataset
:param dataset: path to dataset file
:return: None
'''
if not os.path.isfile(dataset):
datasetfolder = os.path.dirname(dataset)
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_norb_small(datasetfolder)
with open(dataset,'r') as f:
train_x, train_t, test_x, test_t = cPkl.load(f)
if dequantify:
train_x += np.random.uniform(0,1,size=train_x.shape).astype('float32')
test_x += np.random.uniform(0,1,size=test_x.shape).astype('float32')
if normalize:
normalizer = train_x.max().astype('float32')
train_x = train_x / normalizer
test_x = test_x / normalizer
return train_x, train_t, test_x, test_t
def _download_omniglot(dataset):
"""
Download the omniglot dataset if it is not present.
:return: The train, test and validation set.
"""
from scipy.misc import imread,imresize
origin_eval = (
"https://github.com/brendenlake/omniglot/"
"raw/master/python/images_evaluation.zip"
)
origin_back = (
"https://github.com/brendenlake/omniglot/"
"raw/master/python/images_background.zip"
)
print('Downloading data from %s' % origin_eval)
urllib.urlretrieve(origin_eval, dataset + '/images_evaluation.zip')
print('Downloading data from %s' % origin_back)
urllib.urlretrieve(origin_back, dataset + '/images_background.zip')
with zipfile.ZipFile(dataset + '/images_evaluation.zip', "r") as z:
z.extractall(dataset)
with zipfile.ZipFile(dataset + '/images_background.zip', "r") as z:
z.extractall(dataset)
background = dataset + '/images_background'
evaluation = dataset + '/images_evaluation'
matches = []
for root, dirnames, filenames in os.walk(background):
for filename in fnmatch.filter(filenames, '*.png'):
matches.append(os.path.join(root, filename))
for root, dirnames, filenames in os.walk(evaluation):
for filename in fnmatch.filter(filenames, '*.png'):
matches.append(os.path.join(root, filename))
train = []
test = []
def _load_image(fn):
image = imread(fn, True)
image = imresize(image, (32, 32), interp='bicubic')
image = image.reshape((-1))
image = np.abs(image-255.)/255.
return image
for p in matches:
if any(x in p for x in ['16.png','17.png','18.png','19.png','20.png']):
test.append(_load_image(p))
else:
train.append(_load_image(p))
shutil.rmtree(background+'/')
shutil.rmtree(evaluation+'/')
test = np.asarray(test)
train = np.asarray(train)
with open(dataset+'/omniglot.cpkl','w') as f:
cPkl.dump([train, test],f,protocol=cPkl.HIGHEST_PROTOCOL)
def _download_lwf(dataset,size):
from sklearn.datasets import fetch_lfw_people
'''
:param dataset:
:return:
'''
lfw_people = fetch_lfw_people(color=True,resize=size)
f = gzip.open(dataset, 'w')
cPkl.dump([lfw_people.images.astype('uint8'),lfw_people.target], f,
protocol=cPkl.HIGHEST_PROTOCOL)
f.close()
def _download_mnist_binarized(datapath):
"""
Download the fized binzarized MNIST dataset if it is not present.
:return: The train, test and validation set.
"""
datafiles = {
"train": "http://www.cs.toronto.edu/~larocheh/public/"
"datasets/binarized_mnist/binarized_mnist_train.amat",
"valid": "http://www.cs.toronto.edu/~larocheh/public/datasets/"
"binarized_mnist/binarized_mnist_valid.amat",
"test": "http://www.cs.toronto.edu/~larocheh/public/datasets/"
"binarized_mnist/binarized_mnist_test.amat"
}
datasplits = {}
for split in datafiles.keys():
print("Downloading %s data..." %(split))
local_file = datapath + '/binarized_mnist_%s.npy'%(split)
datasplits[split] = np.loadtxt(urllib.urlretrieve(datafiles[split])[0])
f = gzip.open(datapath +'/mnist.pkl.gz', 'w')
pkl.dump([datasplits['train'],datasplits['valid'],datasplits['test']],f)
def load_omniglot(dataset=_get_datafolder_path()+'/omniglot'):
'''
Loads the real valued MNIST dataset
:param dataset: path to dataset file
:return: None
'''
if not os.path.exists(dataset):
os.makedirs(dataset)
_download_omniglot(dataset)
with open(dataset+'/omniglot.cpkl', 'rb') as f:
train, test = cPkl.load(f)
train = train.astype('float32')
test = test.astype('float32')
return train, test
def load_omniglot_iwae(dataset=_get_datafolder_path()+'/omniglot_iwae'):
'''
Loads the real valued Omniglot dataset
:param dataset: path to dataset file
:return: None
'''
if not os.path.exists(dataset):
os.makedirs(dataset)
_download_omniglot_iwae(dataset)
data = loadmat(dataset+'/chardata.mat')
train_x = data['data'].astype('float32').T
train_t = np.argmax(data['target'].astype('float32').T,axis=1)
train_char = data['targetchar'].astype('float32')
test_x = data['testdata'].astype('float32').T
test_t = np.argmax(data['testtarget'].astype('float32').T,axis=1)
test_char = data['testtargetchar'].astype('float32')
return train_x, train_t, train_char, test_x, test_t, test_char
def load_caltech_silhouettes(
dataset=_get_datafolder_path()+'/caltech/caltech101_silhouettes_28_split1.mat'):
'''
Loads the real valued CalTech Silhouettes dataset
:param dataset: path to dataset file
:return: None
'''
if not os.path.isfile(dataset):
datasetfolder = os.path.dirname(dataset)
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_caltech(dataset)
with open(dataset+'.pkl','r') as f:
train_x, train_y, valid_x, valid_y, test_x, test_y = pkl.load(f)
return train_x, train_y, valid_x, valid_y, test_x, test_y
def load_mnist_realval(
dataset=_get_datafolder_path()+'/mnist_real/mnist.pkl.gz'):
'''
Loads the real valued MNIST dataset
:param dataset: path to dataset file
:return: None
'''
if not os.path.isfile(dataset):
datasetfolder = os.path.dirname(dataset)
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_mnist_realval(dataset)
f = gzip.open(dataset, 'rb')
train_set, valid_set, test_set = pkl.load(f)
f.close()
x_train, targets_train = train_set[0], train_set[1]
x_valid, targets_valid = valid_set[0], valid_set[1]
x_test, targets_test = test_set[0], test_set[1]
return x_train, targets_train, x_valid, targets_valid, x_test, targets_test
def load_mnist_binarized(
dataset=_get_datafolder_path()+'/mnist_binarized/mnist.pkl.gz'):
'''
Loads the fixed binarized MNIST dataset provided by Hugo Larochelle.
:param dataset: path to dataset file
:return: None
'''
if not os.path.isfile(dataset):
datasetfolder = os.path.dirname(dataset)
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_mnist_binarized(datasetfolder)
f = gzip.open(dataset, 'rb')
x_train, x_valid, x_test = pkl.load(f)
f.close()
return x_train, x_valid, x_test
def _download_rcv1():
"""
Download the rcv1 dataset from scikitlearn.
:return: The train, test and validation set.
"""
from sklearn.datasets import fetch_rcv1
print("downloading rcv1 train data....")
newsgroups_train = fetch_rcv1(subset='train')
print("downloading rcv1 test data....")
newsgroups_test = fetch_rcv1(subset='test')
train_set = (newsgroups_train.data, newsgroups_train.target)
test_set = (newsgroups_test.data, newsgroups_test.target)
return train_set,test_set
def _download_20newsgroup():
"""
Download the 20 newsgroups dataset from scikitlearn.
:return: The train, test and validation set.
"""
from sklearn.datasets import fetch_20newsgroups
print("downloading 20 newsgroup train data....")
newsgroups_train = fetch_20newsgroups(
subset='train', remove=('headers', 'footers', 'quotes'))
print("downloading 20 newsgroup test data....")
newsgroups_test = fetch_20newsgroups(
subset='test', remove=('headers', 'footers', 'quotes'))
train_set = (newsgroups_train.data, newsgroups_train.target)
test_set = (newsgroups_test.data, newsgroups_test.target)
return train_set,test_set
def _bow(train, test, max_features=1000):
'''
bag-of-words encoding helper function
'''
from sklearn.feature_extraction.text import CountVectorizer
from nltk.stem import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer as EnglishStemmer
from nltk.tokenize import wordpunct_tokenize as wordpunct_tokenize
x_train, y_train = train
x_test, y_test = test
stemmer = EnglishStemmer()
lemmatizer = WordNetLemmatizer()
for i in range(len(x_train)):
x_train[i] = " ".join([lemmatizer.lemmatize(stemmer.stem(token.lower()))
for token in wordpunct_tokenize(
re.sub('[%s]' % re.escape(string.punctuation), '', x_train[i]))])
vectorizer_train = CountVectorizer(strip_accents='ascii',
stop_words='english',
token_pattern=r"(?u)\b\w[a-z]\w+[a-z]\b",
max_features=max_features,
vocabulary=None, dtype='float32')
x_train = vectorizer_train.fit_transform(x_train).toarray()
vocab_train = vectorizer_train.get_feature_names()
vectorizer_test = CountVectorizer(strip_accents='ascii',
stop_words='english',
token_pattern=r"(?u)\b\w[a-z]\w+[a-z]\b",
max_features=max_features,
vocabulary=vocab_train,
dtype='float32')
x_test = vectorizer_test.fit_transform(x_test).toarray()
# remove documents with no words
r = np.where(x_train.sum(axis=1) > 0.)[0]
x_train = x_train[r, :]
y_train = y_train[r]
r = np.where(x_test.sum(axis=1) > 0.)[0]
x_test = x_test[r, :]
y_test = y_test[r]
return (x_train, y_train),(x_test, y_test), vocab_train
def _download_cifar10(dataset):
"""
Download the Cifar10 dataset if it is not present.
"""
origin = (
'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
)
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset)
def load_cifar10(
dataset=_get_datafolder_path()+'/cifar10/cifar-10-python.tar.gz',
normalize=True,
dequantify=True):
'''
Loads the cifar10 dataset
:param dataset: path to dataset file
:param normalize: normalize the x data to the range [0,1]
:param dequantify: Add uniform noise to dequantify the data following
Uria et. al 2013
"RNADE: The real-valued neural autoregressive density-estimator"
:return: train and test data
'''
datasetfolder = os.path.dirname(dataset)
batch_folder = datasetfolder+ '/cifar-10-batches-py/'
if not os.path.isfile(dataset):
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_cifar10(dataset)
if not os.path.isfile(batch_folder + 'data_batch_5'):
with tarfile.open(dataset) as tar:
tar.extractall(os.path.dirname(dataset))
train_x, train_y = [],[]
for i in ['1','2','3','4','5']:
with open(batch_folder + 'data_batch_'+ i,'r') as f:
data = cPkl.load(f)
train_x += [data['data']]
train_y += [data['labels']]
train_x = np.concatenate(train_x)
train_y = np.concatenate(train_y)
with open(batch_folder + 'test_batch','r') as f:
data = cPkl.load(f)
test_x = data['data']
test_y = np.asarray(data['labels'])
train_x = train_x.astype('float32')
test_x = test_x.astype('float32')
if dequantify:
train_x += np.random.uniform(0,1,size=train_x.shape).astype('float32')
test_x += np.random.uniform(0,1,size=test_x.shape).astype('float32')
if normalize:
normalizer = train_x.max().astype('float32')
train_x = train_x / normalizer
test_x = test_x / normalizer
train_x = train_x.reshape((50000, 3, 32, 32)).transpose(0, 2, 3, 1)
test_x = test_x.reshape((10000, 3, 32, 32)).transpose(0, 2, 3, 1)
return train_x.astype('float32'), train_y, test_x.astype('float32'), test_y
def load_frey_faces(
dataset=_get_datafolder_path()+'/frey_faces/frey_faces',
normalize=True,
dequantify=True):
'''
:param dataset:
:param normalize:
:param dequantify: Add uniform noise to dequantify the data following
Uria et. al 2013
"RNADE: The real-valued neural autoregressive density-estimator"
:return:
'''
datasetfolder = os.path.dirname(dataset+'.pkl.gz')
if not os.path.isfile(dataset + '.pkl.gz'):
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_frey_faces(dataset)
if not os.path.isfile(datasetfolder + '/fixed_split.pkl'):
urllib.urlretrieve('https://raw.githubusercontent.com/casperkaae/'
'extra_parmesan/master/data_splits/'
'frey_faces_fixed_split.pkl',
datasetfolder + '/fixed_split.pkl')
f = gzip.open(dataset+'.pkl.gz', 'rb')
data = pkl.load(f)[0].reshape(-1,28,20).astype('float32')
f.close()
if dequantify:
data = data + np.random.uniform(0,1,size=data.shape).astype('float32')
if normalize:
normalizer = data.max().astype('float32')
data = data / normalizer
return data
def load_lfw(
dataset=_get_datafolder_path()+'/lfw/lfw',
normalize=True,
dequantify=True,
size=0.25):
'''
:param dataset:
:param normalize:
:param dequantify: Add uniform noise to dequantify the data following
Uria et. al 2013
"RNADE: The real-valued neural autoregressive density-estimator"
:param size: rescaling factor
:return:
'''
dataset="%s_%0.2f.cpkl"%(dataset,size)
datasetfolder = os.path.dirname(dataset)
if not os.path.isfile(dataset):
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_lwf(dataset,size)
if not os.path.isfile(datasetfolder + '/fixed_split.pkl'):
urllib.urlretrieve('https://raw.githubusercontent.com/casperkaae/'
'extra_parmesan/master/data_splits/'
'lfw_fixed_split.pkl',
datasetfolder + '/fixed_split.pkl')
f = gzip.open(dataset, 'rb')
data = cPkl.load(f)[0].astype('float32')
f.close()
if dequantify:
data = data + np.random.uniform(0,1,size=data.shape).astype('float32')
if normalize:
normalizer = data.max().astype('float32')
data = data / normalizer
return data
def load_svhn(
dataset=_get_datafolder_path()+'/svhn/',
normalize=True,
dequantify=True,
extra=False):
'''
:param dataset:
:param normalize:
:param dequantify: Add uniform noise to dequantify the data following
Uria et. al 2013
"RNADE: The real-valued neural autoregressive density-estimator"
:param extra: include extra svhn samples
:return:
'''
if not os.path.isfile(dataset +'svhn_train.cpkl'):
datasetfolder = os.path.dirname(dataset +'svhn_train.cpkl')
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_svhn(dataset, extra=False)
with open(dataset +'svhn_train.cpkl', 'rb') as f:
train_x,train_y = cPkl.load(f)
with open(dataset +'svhn_test.cpkl', 'rb') as f:
test_x,test_y = cPkl.load(f)
if extra:
if not os.path.isfile(dataset +'svhn_extra.cpkl'):
datasetfolder = os.path.dirname(dataset +'svhn_train.cpkl')
if not os.path.exists(datasetfolder):
os.makedirs(datasetfolder)
_download_svhn(dataset, extra=True)
with open(dataset +'svhn_extra.cpkl', 'rb') as f:
extra_x,extra_y = cPkl.load(f)
train_x = np.concatenate([train_x,extra_x])
train_y = np.concatenate([train_y,extra_y])
train_x = train_x.astype('float32')
test_x = test_x.astype('float32')
train_y = train_y.astype('int32')
test_y = test_y.astype('int32')
if dequantify:
train_x += np.random.uniform(0,1,size=train_x.shape).astype('float32')
test_x += np.random.uniform(0,1,size=test_x.shape).astype('float32')
if normalize:
normalizer = train_x.max().astype('float32')
train_x = train_x / normalizer
test_x = test_x / normalizer
return train_x, train_y, test_x, test_y
def _download_svhn(dataset, extra):
"""
Download the SVHN dataset
"""
print('Downloading data from http://ufldl.stanford.edu/housenumbers/, ' \
'this may take a while...')
if extra:
print("Downloading extra data...")
urllib.urlretrieve('http://ufldl.stanford.edu/housenumbers/extra_32x32.mat',
dataset+'extra_32x32.mat')
extra = loadmat(dataset+'extra_32x32.mat')
extra_x = extra['X'].swapaxes(2,3).swapaxes(1,2).swapaxes(0,1)
extra_y = extra['y'].reshape((-1)) - 1
print("Saving extra data")
with open(dataset +'svhn_extra.cpkl', 'w') as f:
pkl.dump([extra_x,extra_y],f,protocol=cPkl.HIGHEST_PROTOCOL)
os.remove(dataset+'extra_32x32.mat')
else:
print("Downloading train data...")
urllib.urlretrieve('http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
dataset+'train_32x32.mat')
print("Downloading test data...")
urllib.urlretrieve('http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
dataset+'test_32x32.mat')
train = loadmat(dataset+'train_32x32.mat')
train_x = train['X'].swapaxes(2,3).swapaxes(1,2).swapaxes(0,1)
train_y = train['y'].reshape((-1)) - 1
test = loadmat(dataset+'test_32x32.mat')
test_x = test['X'].swapaxes(2,3).swapaxes(1,2).swapaxes(0,1)
test_y = test['y'].reshape((-1)) - 1
print("Saving train data")
with open(dataset +'svhn_train.cpkl', 'w') as f:
cPkl.dump([train_x,train_y],f,protocol=cPkl.HIGHEST_PROTOCOL)
print("Saving test data")
with open(dataset +'svhn_test.cpkl', 'w') as f:
pkl.dump([test_x,test_y],f,protocol=cPkl.HIGHEST_PROTOCOL)
os.remove(dataset+'train_32x32.mat')
os.remove(dataset+'test_32x32.mat')
# helper function for converting chars to matrix format
def create_matrix(reviews, y_cls):
num_seqs = len(reviews)
X = np.zeros((num_seqs, max_len), dtype='int32') -1 # set all to -1
for row in range(num_seqs):
review = reviews[row]
for col in range(len(review)):
# try to look up key otherwise use unk_idx
if review[col] in char2idx:
char_idx = char2idx[review[col]]
else:
char_idx = unk_idx
X[row, col] = char_idx
mask = (X != -1).astype('float32')
X[X==-1] = 0
y = np.ones(num_seqs, dtype='int32')*y_cls
return X, y, mask
X_pos, y_pos, mask_pos = create_matrix(pos_lst, 1)
X_neg, y_neg, mask_neg = create_matrix(neg_lst, 0)
X = np.concatenate([X_pos, X_neg], axis=0)
y = np.concatenate([y_pos, y_neg], axis=0)
mask = np.concatenate([mask_pos, mask_neg])
print("-"*40)
print("Minium length filter :", minimum_len)
print("Maximum length filter:", maximum_len)
if minimum_len is not None:
seq_lens = mask.sum(axis=1)
keep = seq_lens >= minimum_len
print("Seqs below minimum : %i" % np.invert(keep).sum())
X = X[keep, :]
y = y[keep]
mask = mask[keep, :]
if maximum_len is not None:
seq_lens = mask.sum(axis=1)
keep = seq_lens <= maximum_len
print("Seqs above maximum : %i" % np.invert(keep).sum())
X = X[keep, :]
y = y[keep]
mask = mask[keep, :]
np.random.seed(seed)
p = np.random.permutation(X.shape[0])
X = X[p]
y = y[p]
mask = mask[p]
seq_lens = mask.sum(axis=1).astype('int32')
print("X :", X.shape, X.dtype)
print("y :", y.shape, y.dtype)
print("mask :", mask.shape, mask.dtype)
print("MIN length : ", seq_lens.min())
print("MAX length : ", seq_lens.max())
print("MEAN length : ", seq_lens.mean())
print("UNKOWN chars : ", np.sum(X==unk_idx))
print("-"*40)
# check that idx's in X is the number of vocab_size + unk_idx
n = vocab_size if isinstance(vocab_size, int) else len(vocab_size)
assert len(np.unique(X)) == n + 1
assert sum(np.unique(y)) == 1 # check that y is 0,1
return X, y, mask, vocab
def _one_hot(x,n_labels=None):
if n_labels is None:
n_labels = np.max(x)
return np.eye(n_labels)[x]
def _download_and_extract_stl10(dest_directory):
"""
SOURCE: https://github.com/mttk/STL10
Download and extract the STL-10 dataset
:return: None
"""
import sys
origin = 'http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz'
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = origin.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\rDownloading %s %.2f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.urlretrieve(origin, filepath, reporthook=_progress)
print('Downloaded', filename)
binary_directory = os.path.join(dest_directory, 'stl10_binary')
if not os.path.exists(binary_directory):
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
return binary_directory
def load_stl10(
dataset=_get_datafolder_path()+'/stl10/stl10_binary.tar.gz',
normalize=False,
dequantify=False):
'''
Loads the stl10 dataset
:param dataset: path to dataset file
:param normalize: Not supported. For normalization we would need to
convert the dataset to float32 which would increase
the dataset size further
:param dequantify: not supported
:return: data. Note that the data will be returned as uint8 to save memory.
You'll need to convert it to float32.
'''
if normalize is True:
raise ValueError('Normalization with STL10 loader is not supported. '
'Create an iterator that normalizes on the fly')
if dequantify is True:
raise ValueError('Dequantify is not supported with STL10 loader. '
'Create an iterator that dequantifies on the fly')
def read_all_images(path_to_data):
print("Loading %s" % path_to_data,)
with open(path_to_data, 'rb') as f:
# read whole file in uint8 chunks
everything = np.fromfile(f, dtype=np.uint8)
images = np.reshape(everything, (-1, 3, 96, 96))
images = np.transpose(images, (0, 1, 3, 2))
print("shp", images.shape, "dtype", images.dtype)
return images
def read_labels(path_to_labels):
print("Loading %s" % path_to_labels)
with open(path_to_labels, 'rb') as f:
labels = np.fromfile(f, dtype=np.uint8)
labels -= 1 # from 1...10 to 0...9
print("shp", labels.shape, "dtype", labels.dtype)
return labels
datasetfolder = os.path.dirname(dataset)
# download and extract if nessesary
binary_directory = _download_and_extract_stl10(datasetfolder)
data_path_train = os.path.join(binary_directory, 'train_X.bin')
data_path_test = os.path.join(binary_directory, 'test_X.bin')
data_path_unlab = os.path.join(binary_directory, 'unlabeled_X.bin')
label_path_train = os.path.join(binary_directory, 'train_y.bin')
label_path_test = os.path.join(binary_directory, 'test_y.bin')
x_train = read_all_images(data_path_train)
x_test = read_all_images(data_path_test)
x_unlab = read_all_images(data_path_unlab)
y_train = read_labels(label_path_train)
y_test = read_labels(label_path_test)
return x_train, y_train, x_test, y_test, x_unlab