@@ -148,7 +148,7 @@ auditBayesianEstimation <- function(jaspResults, dataset, options, ...) {
148
148
result <- jaspResults [[" state" ]]$ object
149
149
150
150
pTry <- try({
151
- if (options [[" priorKappa" ]] == 0 || options [[" priorNu" ]] = = 0 || options [[" priorSigma2" ]] == 0 ) {
151
+ if (options [[" priorKappa" ]] == 0 || options [[" priorNu" ]] < = 0 || options [[" priorSigma2" ]] == 0 ) {
152
152
xseq <- seq(extraDistr :: qlst(0.0001 , df = result $ posterior $ nu , mu = result $ posterior $ mu , sigma = result $ posterior $ sigma ),
153
153
extraDistr :: qlst(0.9999 , df = result $ posterior $ nu , mu = result $ posterior $ mu , sigma = result $ posterior $ sigma ),
154
154
length.out = 1000
@@ -215,7 +215,7 @@ auditBayesianEstimation <- function(jaspResults, dataset, options, ...) {
215
215
}
216
216
}
217
217
218
- .jfaDirectBayes <- function (y , n , N , mu0 = 0 , kappa0 = 0 , nu0 = 0 , sigma20 = 0 , conf.level = 0.95 ) {
218
+ .jfaDirectBayes <- function (y , n , N , mu0 = 0 , kappa0 = 0 , nu0 = - 1 , sigma20 = 0 , conf.level = 0.95 ) {
219
219
alpha <- (1 - conf.level ) / 2
220
220
mu_n <- (kappa0 * mu0 + n * mean(y )) / (kappa0 + n )
221
221
kappa_n <- kappa0 + n
@@ -234,7 +234,7 @@ auditBayesianEstimation <- function(jaspResults, dataset, options, ...) {
234
234
return (list (est = muY , lb = lb , ub = ub , unc = ub - muY , prior = list (nu = nu0 , sigma = sigmaYprior , mu = muYprior ), posterior = list (nu = nu_n , sigma = sigmaY , mu = muY )))
235
235
}
236
236
237
- .jfaDifferenceBayes <- function (y , x , n , X , N , mu0 = 0 , kappa0 = 0 , nu0 = 0 , sigma20 = 0 , conf.level = 0.95 ) {
237
+ .jfaDifferenceBayes <- function (y , x , n , X , N , mu0 = 0 , kappa0 = 0 , nu0 = - 1 , sigma20 = 0 , conf.level = 0.95 ) {
238
238
alpha <- (1 - conf.level ) / 2
239
239
e <- x - y
240
240
mu_n <- (kappa0 * mu0 + n * mean(e )) / (kappa0 + n )
@@ -254,7 +254,7 @@ auditBayesianEstimation <- function(jaspResults, dataset, options, ...) {
254
254
return (list (est = muY , lb = lb , ub = ub , unc = ub - muY , prior = list (nu = nu0 , sigma = sigmaYprior , mu = muYprior ), posterior = list (nu = nu_n , sigma = sigmaY , mu = muY )))
255
255
}
256
256
257
- .jfaRatioBayes <- function (y , x , n , X , N , mu0 = 0 , kappa0 = 0 , nu0 = 0 , sigma20 = 0 , conf.level = 0.95 ) {
257
+ .jfaRatioBayes <- function (y , x , n , X , N , mu0 = 0 , kappa0 = 0 , nu0 = - 1 , sigma20 = 0 , conf.level = 0.95 ) {
258
258
alpha <- (1 - conf.level ) / 2
259
259
q <- y / x
260
260
mu_n <- (kappa0 * mu0 + n * mean(q )) / (kappa0 + n )
@@ -274,7 +274,7 @@ auditBayesianEstimation <- function(jaspResults, dataset, options, ...) {
274
274
return (list (est = muY , lb = lb , ub = ub , unc = ub - muY , prior = list (nu = nu0 , sigma = sigmaYprior , mu = muYprior ), posterior = list (nu = nu_n , sigma = sigmaY , mu = muY )))
275
275
}
276
276
277
- .jfaRegressionBayes <- function (y , x , n , X , N , mu0 = c(0 , 0 ), Lambda0 = diag(2 ) * 0 , nu0 = 0 , sigma20 = 0 , conf.level = 0.95 ) {
277
+ .jfaRegressionBayes <- function (y , x , n , X , N , mu0 = c(0 , 0 ), Lambda0 = diag(2 ) * 0 , nu0 = - 1 , sigma20 = 0 , conf.level = 0.95 ) {
278
278
alpha <- (1 - conf.level ) / 2
279
279
D <- cbind(1 , x )
280
280
DtD <- t(D ) %*% D
0 commit comments