-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay_to_df.py
324 lines (304 loc) · 20.8 KB
/
replay_to_df.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
## TAKES IN REPLAY FILES FROM AND GIVES DF ##
import carball
import pandas as pd
from numpy import isnan
from google.protobuf.json_format import MessageToDict
from tqdm import tqdm
import os
DELETE_WHEN_LEFT = 1
pd.set_option('mode.chained_assignment', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
## converting replays ##
#rootdir = '/home/zach/Files/Nas/Replays'
rootdir = '/home/zach/Files/Nas/ReplayModels/ReplayDataProcessing/RANKED_STANDARD/Replays/1400-1600'
for root, dirs, files in os.walk(rootdir):
for filename in tqdm(files):
if not filename.endswith('.replay'):
print("\n", filename, "not a replay\n")
continue
csv_name = rootdir+"/CSVs/"+filename
csv_name = csv_name.replace('.replay', '.csv')
if os.path.exists(csv_name):
continue
print("ANALYZING...")
try:
analysis_manager = carball.analyze_replay_file(os.path.abspath(os.path.join(root, filename)))
except Exception as e:
print("ERROR WITH REPLAY ANALYSIS\n", e)
os.remove(os.path.abspath(os.path.join(root, filename)))
continue
proto_game = analysis_manager.get_protobuf_data()
df = analysis_manager.get_data_frame()
df = df.astype('float64')
df.reset_index(drop=True, inplace=True)
dict_game = MessageToDict(proto_game)
player_team = {}
best_score = 0
know_score = True
know_team = True
if len(dict_game['players']) != 6:
print("6 players not found")
os.remove(os.path.abspath(os.path.join(root, filename)))
continue
for i in dict_game['players']:
# indentifies MVP
try:
if i['score'] > best_score:
best_score = i['score']
except KeyError:
know_score = False
print("NO SCORE")
break
try:
if i['isOrange']:
player_team.update({i['name']: tuple([i['score'], 'orange'])})
else:
player_team.update({i['name']: tuple([i['score'], 'blue'])})
except KeyError:
know_team = False
print("NO TEAM")
break
if not know_team or not know_score:
os.remove(os.path.abspath(os.path.join(root, filename)))
continue
# identifying best player(s)
ordered_playas = []
for name, score in player_team.items():
if score[0] == best_score:
ordered_playas.append(name)
playas = list(list(df.columns.levels)[0])
playas.remove('ball')
playas.remove('game')
for playa in playas:
if playa not in ordered_playas and player_team[playa][1] == player_team[ordered_playas[0]][1]:
ordered_playas.append(playa)
for playa in playas:
if playa not in ordered_playas and player_team[playa][1] != player_team[ordered_playas[0]][1]:
ordered_playas.append(playa)
########################### MAKING SURE EACH LEVEL IS SAME LENGTH
length = len(df['ball'])
if length != len(df['game']):
print("BAD")
exit()
for playa in ordered_playas:
if len(df[playa]) != length:
print("BAD")
exit()
###########################
## MAKING NEW SINGLE LEVEL DF FOR TRAINING ##
## PLAYER 0, 1, AND 1 ARE HIGHEST SCORING PLAYER'S TEAM WHILE 3, 4, AND 5 ARE ON OPPOSITE TEAM ##
player_desired = 0
single_level_df = df[ordered_playas[player_desired]]
#################################################################################################################
'''
rem_cols = ['rot_x','rot_y','rot_z','vel_x','vel_y','vel_z','ang_vel_x','ang_vel_y',\
'ang_vel_z','ping','throttle','steer','handbrake','ball_cam','boost','boost_active','jump_active',\
'double_jump_active','dodge_active','boost_collect']
for col in rem_cols:
if col in single_level_df.columns:
single_level_df.drop(columns=[col], inplace=True)
single_level_df.rename(columns={'pos_x': str(player_desired)+'_pos_x', 'pos_y': str(player_desired)+'_pos_y', 'pos_z': str(player_desired)+'_pos_z'}, inplace=True)
'''
single_level_df.drop(columns=['ping'], inplace=True, errors='ignore')
single_level_df.rename(columns={'pos_x': str(player_desired)+'_pos_x', 'pos_y': str(player_desired)+'_pos_y', 'pos_z': str(player_desired)+'_pos_z',
'rot_x': str(player_desired)+'_rot_x', 'rot_y': str(player_desired)+'_rot_y', 'rot_z': str(player_desired)+'_rot_z',
'vel_x': str(player_desired)+'_vel_x', 'vel_y': str(player_desired)+'_vel_y', 'vel_z': str(player_desired)+'_vel_z',
'ang_vel_x': str(player_desired)+'_ang_vel_x', 'ang_vel_y': str(player_desired)+'_ang_vel_y', 'ang_vel_z': str(player_desired)+'_ang_vel_z',
'throttle': str(player_desired)+'_throttle', 'steer': str(player_desired)+'_steer', 'handbrake': str(player_desired)+'_handbrake',
'ball_cam': str(player_desired)+'_ball_cam', 'boost': str(player_desired)+'_boost', 'boost_active': str(player_desired)+'_boost_active',
'jump_active': str(player_desired)+'_jump_active', 'double_jump_active': str(player_desired)+'_double_jump_active', 'dodge_active': str(player_desired)+'_dodge_active',
'boost_collect': str(player_desired)+'_boost_collect'}, inplace=True)
#################################################################################################################
for i, playa in enumerate(ordered_playas):
if player_desired == i:
continue
piece = df[playa]
#################################################################################################################
'''
rem_cols = ['ping','throttle','steer','handbrake','ball_cam','boost','boost_active','jump_active',\
'double_jump_active','dodge_active','boost_collect']
for col in rem_cols:
if col in piece.columns:
piece.drop(columns=[col], inplace=True)
piece.rename(columns={'pos_x': str(i)+'_pos_x', 'pos_y': str(i)+'_pos_y', 'pos_z': str(i)+'_pos_z', \
'rot_x': str(i)+'_rot_x', 'rot_y': str(i)+'_rot_y', 'rot_z': str(i)+'_rot_z', 'vel_x': str(i)+'_vel_x', \
'vel_y': str(i)+'_vel_y', 'vel_z': str(i)+'_vel_z', 'ang_vel_x': str(i)+'_ang_vel_x', 'ang_vel_y': str(i)+'_ang_vel_y', \
'ang_vel_z': str(i)+'_ang_vel_z'}, inplace=True)
'''
piece.drop(columns=['ping'], inplace=True, errors='ignore')
piece.rename(columns={'pos_x': str(i)+'_pos_x', 'pos_y': str(i)+'_pos_y', 'pos_z': str(i)+'_pos_z',
'rot_x': str(i)+'_rot_x', 'rot_y': str(i)+'_rot_y', 'rot_z': str(i)+'_rot_z',
'vel_x': str(i)+'_vel_x', 'vel_y': str(i)+'_vel_y', 'vel_z': str(i)+'_vel_z',
'ang_vel_x': str(i)+'_ang_vel_x', 'ang_vel_y': str(i)+'_ang_vel_y', 'ang_vel_z': str(i)+'_ang_vel_z',
'throttle': str(i)+'_throttle', 'steer': str(i)+'_steer', 'handbrake': str(i)+'_handbrake',
'ball_cam': str(i)+'_ball_cam', 'boost': str(i)+'_boost', 'boost_active': str(i)+'_boost_active',
'jump_active': str(i)+'_jump_active', 'double_jump_active': str(i)+'_double_jump_active', 'dodge_active': str(i)+'_dodge_active',
'boost_collect': str(i)+'_boost_collect'}, inplace=True)
#################################################################################################################
single_level_df = single_level_df.join(piece)
ball_data = df['ball']
ball_data.drop(columns=['hit_team_no'], inplace=True, errors='ignore')
ball_data.rename(columns={'pos_x': 'ball_pos_x', 'pos_y': 'ball_pos_y', 'pos_z': 'ball_pos_z', 'rot_x': 'ball_rot_x', \
'rot_y': 'ball_rot_y', 'rot_z': 'ball_rot_z', 'vel_x': 'ball_vel_x', 'vel_y': 'ball_vel_y', 'vel_z': 'ball_vel_z', \
'ang_vel_x': 'ball_ang_vel_x', 'ang_vel_y': 'ball_ang_vel_y', 'ang_vel_z': 'ball_ang_vel_z'}, inplace=True)
single_level_df = single_level_df.join(ball_data)
single_level_df['seconds_remaining'] = df['game']['seconds_remaining']
# need to do this if someone leaves game
# THIS IS STILL BROKEN. THIS ONLY CHECKS ONE ROW FOR ALL NAN
# MAKE SURE EVERYTHING ELSE FOR THAT PLAYER AFTER THAT ROW IS NAN
if not all(k in single_level_df.columns for k in ['0_pos_x', '0_pos_y', '0_pos_z', '1_pos_x', '1_pos_y', '1_pos_z',
'2_pos_x', '2_pos_y', '2_pos_z', '3_pos_x', '3_pos_y', '3_pos_z', '4_pos_x', '4_pos_y', '4_pos_z',
'5_pos_x', '5_pos_y', '5_pos_z']):
print("not all players accounted for")
os.remove(os.path.abspath(os.path.join(root, filename)))
continue
single_level_df.reset_index(drop=True, inplace=True)
if DELETE_WHEN_LEFT:
print("CHECKING IF PLAYERS LEFT...")
rem_rows = set()
for i in single_level_df.index:
if (isnan(single_level_df.at[i, '0_pos_x']) and isnan(single_level_df.at[i, '0_pos_y']) and isnan(single_level_df.at[i, '0_pos_z'])):
#and isnan(single_level_df.at[i, '0_rot_x']) and isnan(single_level_df.at[i, '0_rot_y']) and isnan(single_level_df.at[i, '0_rot_z']) \
#and isnan(single_level_df.at[i, '0_vel_x']) and isnan(single_level_df.at[i, '0_vel_y']) and isnan(single_level_df.at[i, '0_vel_z']) \
#and isnan(single_level_df.at[i, '0_ang_vel_x']) and isnan(single_level_df.at[i, '0_ang_vel_y']) and isnan(single_level_df.at[i, '0_ang_vel_z']) \
#and isnan(single_level_df.at[i, '0_throttle']) and isnan(single_level_df.at[i, '0_steer']) and isnan(single_level_df.at[i, '0_handbrake']) \
#and isnan(single_level_df.at[i, '0_ball_cam']) and isnan(single_level_df.at[i, '0_boost']) and isnan(single_level_df.at[i, '0_boost_active']) \
#and isnan(single_level_df.at[i, '0_jump_active']) and isnan(single_level_df.at[i, '0_double_jump_active']) and isnan(single_level_df.at[i, '0_dodge_active']) \
#and isnan(single_level_df.at[i, '0_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('0'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['0_pos_x', '0_pos_y', '0_pos_z'])
if tmp.dropna(how='all').empty:
print('player 0 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
if (isnan(single_level_df.at[i, '1_pos_x']) and isnan(single_level_df.at[i, '1_pos_y']) and isnan(single_level_df.at[i, '1_pos_z'])):
#and isnan(single_level_df.at[i, '1_rot_x']) and isnan(single_level_df.at[i, '1_rot_y']) and isnan(single_level_df.at[i, '1_rot_z']) \
#and isnan(single_level_df.at[i, '1_vel_x']) and isnan(single_level_df.at[i, '1_vel_y']) and isnan(single_level_df.at[i, '1_vel_z']) \
#and isnan(single_level_df.at[i, '1_ang_vel_x']) and isnan(single_level_df.at[i, '1_ang_vel_y']) and isnan(single_level_df.at[i, '1_ang_vel_z']) \
#and isnan(single_level_df.at[i, '1_throttle']) and isnan(single_level_df.at[i, '1_steer']) and isnan(single_level_df.at[i, '1_handbrake']) \
#and isnan(single_level_df.at[i, '1_ball_cam']) and isnan(single_level_df.at[i, '1_boost']) and isnan(single_level_df.at[i, '1_boost_active']) \
#and isnan(single_level_df.at[i, '1_jump_active']) and isnan(single_level_df.at[i, '1_double_jump_active']) and isnan(single_level_df.at[i, '1_dodge_active']) \
#and isnan(single_level_df.at[i, '1_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('1'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['1_pos_x', '1_pos_y', '1_pos_z'])
if tmp.dropna(how='all').empty:
print('player 1 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
if (isnan(single_level_df.at[i, '2_pos_x']) and isnan(single_level_df.at[i, '2_pos_y']) and isnan(single_level_df.at[i, '2_pos_z'])):
#and isnan(single_level_df.at[i, '2_rot_x']) and isnan(single_level_df.at[i, '2_rot_y']) and isnan(single_level_df.at[i, '2_rot_z']) \
#and isnan(single_level_df.at[i, '2_vel_x']) and isnan(single_level_df.at[i, '2_vel_y']) and isnan(single_level_df.at[i, '2_vel_z']) \
#and isnan(single_level_df.at[i, '2_ang_vel_x']) and isnan(single_level_df.at[i, '2_ang_vel_y']) and isnan(single_level_df.at[i, '2_ang_vel_z']) \
#and isnan(single_level_df.at[i, '2_throttle']) and isnan(single_level_df.at[i, '2_steer']) and isnan(single_level_df.at[i, '2_handbrake']) \
#and isnan(single_level_df.at[i, '2_ball_cam']) and isnan(single_level_df.at[i, '2_boost']) and isnan(single_level_df.at[i, '2_boost_active']) \
#and isnan(single_level_df.at[i, '2_jump_active']) and isnan(single_level_df.at[i, '2_double_jump_active']) and isnan(single_level_df.at[i, '2_dodge_active']) \
#and isnan(single_level_df.at[i, '2_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('2'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['2_pos_x', '2_pos_y', '2_pos_z'])
if tmp.dropna(how='all').empty:
print('player 2 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
if (isnan(single_level_df.at[i, '3_pos_x']) and isnan(single_level_df.at[i, '3_pos_y']) and isnan(single_level_df.at[i, '3_pos_z'])):
#and isnan(single_level_df.at[i, '3_rot_x']) and isnan(single_level_df.at[i, '3_rot_y']) and isnan(single_level_df.at[i, '3_rot_z']) \
#and isnan(single_level_df.at[i, '3_vel_x']) and isnan(single_level_df.at[i, '3_vel_y']) and isnan(single_level_df.at[i, '3_vel_z']) \
#and isnan(single_level_df.at[i, '3_ang_vel_x']) and isnan(single_level_df.at[i, '3_ang_vel_y']) and isnan(single_level_df.at[i, '3_ang_vel_z']) \
#and isnan(single_level_df.at[i, '3_throttle']) and isnan(single_level_df.at[i, '3_steer']) and isnan(single_level_df.at[i, '3_handbrake']) \
#and isnan(single_level_df.at[i, '3_ball_cam']) and isnan(single_level_df.at[i, '3_boost']) and isnan(single_level_df.at[i, '3_boost_active']) \
#and isnan(single_level_df.at[i, '3_jump_active']) and isnan(single_level_df.at[i, '3_double_jump_active']) and isnan(single_level_df.at[i, '3_dodge_active']) \
#and isnan(single_level_df.at[i, '3_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('3'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['3_pos_x', '3_pos_y', '3_pos_z'])
if tmp.dropna(how='all').empty:
print('player 3 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
if (isnan(single_level_df.at[i, '4_pos_x']) and isnan(single_level_df.at[i, '4_pos_y']) and isnan(single_level_df.at[i, '4_pos_z'])):
#and isnan(single_level_df.at[i, '4_rot_x']) and isnan(single_level_df.at[i, '4_rot_y']) and isnan(single_level_df.at[i, '4_rot_z']) \
#and isnan(single_level_df.at[i, '4_vel_x']) and isnan(single_level_df.at[i, '4_vel_y']) and isnan(single_level_df.at[i, '4_vel_z']) \
#and isnan(single_level_df.at[i, '4_ang_vel_x']) and isnan(single_level_df.at[i, '4_ang_vel_y']) and isnan(single_level_df.at[i, '4_ang_vel_z']) \
#and isnan(single_level_df.at[i, '4_throttle']) and isnan(single_level_df.at[i, '4_steer']) and isnan(single_level_df.at[i, '4_handbrake']) \
#and isnan(single_level_df.at[i, '4_ball_cam']) and isnan(single_level_df.at[i, '4_boost']) and isnan(single_level_df.at[i, '4_boost_active']) \
#and isnan(single_level_df.at[i, '4_jump_active']) and isnan(single_level_df.at[i, '4_double_jump_active']) and isnan(single_level_df.at[i, '4_dodge_active']) \
#and isnan(single_level_df.at[i, '4_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('4'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['4_pos_x', '4_pos_y', '4_pos_z'])
if tmp.dropna(how='all').empty:
print('player 4 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
if (isnan(single_level_df.at[i, '5_pos_x']) and isnan(single_level_df.at[i, '5_pos_y']) and isnan(single_level_df.at[i, '5_pos_z'])):
#and isnan(single_level_df.at[i, '5_rot_x']) and isnan(single_level_df.at[i, '5_rot_y']) and isnan(single_level_df.at[i, '5_rot_z']) \
#and isnan(single_level_df.at[i, '5_vel_x']) and isnan(single_level_df.at[i, '5_vel_y']) and isnan(single_level_df.at[i, '5_vel_z']) \
#and isnan(single_level_df.at[i, '5_ang_vel_x']) and isnan(single_level_df.at[i, '5_ang_vel_y']) and isnan(single_level_df.at[i, '5_ang_vel_z']) \
#and isnan(single_level_df.at[i, '5_throttle']) and isnan(single_level_df.at[i, '5_steer']) and isnan(single_level_df.at[i, '5_handbrake']) \
#and isnan(single_level_df.at[i, '5_ball_cam']) and isnan(single_level_df.at[i, '5_boost']) and isnan(single_level_df.at[i, '5_boost_active']) \
#and isnan(single_level_df.at[i, '5_jump_active']) and isnan(single_level_df.at[i, '5_double_jump_active']) and isnan(single_level_df.at[i, '5_dodge_active']) \
#and isnan(single_level_df.at[i, '5_boost_collect'])):
'''
player_columns = []
for x in single_level_df.columns:
if x.startswith('5'):
player_columns.append(x)
'''
tmp = single_level_df[i:]
#tmp = tmp.filter(items=player_columns)
tmp = tmp.filter(items=['5_pos_x', '5_pos_y', '5_pos_z'])
if tmp.dropna(how='all').empty:
print('player 5 left the game')
single_level_df = single_level_df[:i]
break
else:
rem_rows.add(i)
single_level_df.drop(rem_rows, errors='ignore', inplace=True)
single_level_df.reset_index(drop=True, inplace=True)
if not single_level_df.empty:
print("WRITING", csv_name)
single_level_df.to_csv(csv_name)
break