Skip to content

Different results in DMI indicators (ex: adx_X_ema) between 0.5.X and 0.6.X.  #182

@truchindedios

Description

@truchindedios

If we compute the same indicators, with same code/data we obtain different results between branchs 0.5.X and 0.6.X.
In this screen capture you have same code executing with 2 clone conda env , only changing the stockstats version.
Which of them is correct?
stockstatsADX

df_prices_l[['tic','volume','high','low','open','close']].tail()
Field tic volume ... open close
date ...
2023-11-02 945384 24946.0 ... 35.31 35.90
2023-11-02 945388 35788.8 ... 15.62 15.73
2023-11-02 992816 77334.8 ... 175.52 177.57
2023-11-02 993249 8135.1 ... 102.05 105.08
2023-11-02 998171 3628.0 ... 290.25 294.53

stock = Sdf.retype(df_prices_l.copy())
stock['adx_5_ema']

VERSION 0.5.4
stock[['tic','close','adx_5_ema']]
Field tic close adx_5_ema
date
2023-01-03 13967E 66.25 NaN
2023-01-03 28236L 134.78 100.000000
2023-01-03 51683M 207.39 100.000000
2023-01-03 542868 47.94 81.839948
2023-01-03 696738 346.22 71.437125
... ... ... ...
2023-11-02 945384 35.90 16.147743
2023-11-02 945388 15.73 15.958998
2023-11-02 992816 177.57 15.557359
2023-11-02 993249 105.08 13.905666
2023-11-02 998171 294.53 14.194133

VERSION 0.6.0
stock[['tic','close','adx_5_ema']]
Field tic close adx_5_ema
date
2023-01-03 13967E 66.25 NaN
2023-01-03 28236L 134.78 100.000000
2023-01-03 51683M 207.39 100.000000
2023-01-03 542868 47.94 80.787141
2023-01-03 696738 346.22 70.113103
... ... ... ...
2023-11-02 945384 35.90 7.794167
2023-11-02 945388 15.73 7.855445
2023-11-02 992816 177.57 7.757818
2023-11-02 993249 105.08 6.994558
2023-11-02 998171 294.53 7.368469

Thanks for you code!! It's really good!!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions