-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprototype.py
235 lines (195 loc) · 8.36 KB
/
prototype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
from dotenv import load_dotenv
import gradio as gr
import requests
from langchain.chat_models import AzureChatOpenAI
from langchain.prompts import (
PromptTemplate,
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from azure.cosmosdb.table.tableservice import TableService
import pandas as pd
import langchain
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import WebBaseLoader
from langchain.prompts import PromptTemplate
from langchain.llms import AzureOpenAI
from translate import Translator
from azure.cosmosdb.table.tableservice import TableService
import pandas as pd
from constants import states
langchain.debug = True
load_dotenv()
# Create instance to call GPT model
gpt = AzureChatOpenAI(
openai_api_base=os.environ.get("openai_endpoint"),
openai_api_version="2023-03-15-preview",
deployment_name=os.environ.get("gpt_deployment_name"),
openai_api_key=os.environ.get("openai_api_key"),
openai_api_type = os.environ.get("openai_api_type"),
)
def call_gpt_model(rag_from_bing, message):
system_template="You are a professional, helpful assistant to provide resources to combat childhood hunger. \n"
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
user_prompt=PromptTemplate(
template="## Context \n {rag_from_bing} \n" +
"## Instructions \n Using the above context, answer the question below.\n" +
"## Question \n {message} \n",
input_variables=["rag_from_bing", "message"],
)
human_message_prompt = HumanMessagePromptTemplate(prompt=user_prompt)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# Get formatted messages for the chat completion
messages = chat_prompt.format_prompt(rag_from_bing={rag_from_bing}, message={message}).to_messages()
print("Messages")
print(messages)
# Call the model
output = gpt(messages)
print("Output")
print(output)
return output.content
def call_langchain_model(rag_from_bing, docs, user_ask):
qa_template = """
# Reference documentation
{context}
# Question
{question}
# Answer
"""
PROMPT = PromptTemplate(
template=qa_template, input_variables=["context", "question"]
)
llm = AzureChatOpenAI(deployment_name=os.environ.get("gpt_deployment_name"),
openai_api_version="2023-05-15",
temperature=0,
openai_api_key=os.environ.get("openai_api_key"),
openai_api_base=os.environ.get("openai_endpoint"))
chain = load_qa_chain(llm, chain_type="stuff", prompt=PROMPT)
result = chain({"input_documents": docs, "question": user_ask}, return_only_outputs=True)
print(result)
return result["output_text"]
def scrape(urls):
loader = WebBaseLoader(urls)
docs = loader.load()
return docs
'''
# Send a GET request to the URL
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
# Print the HTML content of the response
print(response.text)
# TODO: consider stripping html tags or any extra tokens?
return response.text
else:
# Print an error message
print(f"Request failed with status code {response.status_code}")
'''
def chat(message, state):
try:
# # Get location
# location = get_location()
# print("Location")
# print(location)
# # Table storage logic here
# state = location["region"]
# # TODO: We need error handling here to ensure that state is in the right format "Michigan" not "MI" etc. Get from dropdown?
# state = "Washington"
print("State")
print(state)
except KeyError:
print("Error: 'region' key not found in the location dictionary.")
except Exception as e:
print(f"An error occurred: {str(e)}")
#fq = "PartitionKey eq 'State'"
partition_key = 'State'
fq = "PartitionKey eq '{}' and RowKey eq '{}'".format(partition_key, state)
ts = get_table_service()
#df = get_dataframe_from_table_storage_table(table_service=ts, filter_query=fq)
filteredList = get_dataframe_from_table_storage_table(table_service=ts, filter_query=fq)
pd.set_option('display.max_colwidth', None)
#filteredList = df[df["RowKey"] == state]
print("Filtered List:")
print(filteredList)
eligibility_website = None
snap_screener = None
eligibility_pdf = None
if 'EligibilityWebsite' in filteredList.columns:
eligibility_website = (filteredList['EligibilityWebsite']).to_string(index=False)
print(eligibility_website)
if 'SnapScreener' in filteredList.columns:
snap_screener = (filteredList['SnapScreener']).to_string(index=False)
print(snap_screener)
if 'OnlineApplication' in filteredList.columns:
online_application = (filteredList['OnlineApplication']).to_string(index=False)
print(online_application)
if 'EligibilityPDF' in filteredList.columns:
eligibility_pdf = (filteredList['EligibilityPDF']).to_string(index=False)
print(eligibility_pdf)
urls_list = [eligibility_website, snap_screener, online_application, eligibility_pdf]
print(urls_list)
urls = [x for x in urls_list if x is not None and x != "NaN"]
# TODO - do we need logic here to see if we have sufficient trusted source data, or whether we even need to call Bing? # Call Bing to get context
#bing_response = bingsearch.call_search_api(query, bing_endpoint, bing_api_key)
#rag_from_bing = bing_response
rag_from_bing = ""
# Get information from trusted sources
# TODO: test this integration. Are we pulling all resources or missing some columns? Do we need better error checking for null values? etc. docs = scrape(urls)
docs = scrape(urls)
gov_docs_langchain_response = call_langchain_model(rag_from_bing, docs, message)
#query = "If I live in " + location["city"] + ", " + location["region"] + ", am I eligibile for SNAP - Supplemental Nutrition Assistance Program (Food Stamps), WIC - Women, Infants and Children, SFSP and SSO (summer food services for kids)?"
#print(query)
# Call GPT model with context from Bing
#model_response =call_gpt_model(rag_from_bing, message)
#return model_response
return gov_docs_langchain_response
# Gets the ip address of the request (user)
def get_ip():
response = requests.get('https://api64.ipify.org?format=json').json()
return response["ip"]
# Fetches the location of the user based on the ip address
def get_location():
ip_address = get_ip()
response = requests.get(f'https://ipapi.co/{ip_address}/json/').json()
location_data = {
"ip": ip_address,
"city": response.get("city"),
"region": response.get("region"),
"country": response.get("country_name")
}
return location_data
# Azure Table Storage logic
def get_table_service():
# """ Set the Azure Table Storage service """
return TableService(connection_string=os.environ.get("db_connection_string"))
def get_dataframe_from_table_storage_table(table_service, filter_query):
# Create a dataframe from table storage data
return pd.DataFrame(get_data_from_table_storage_table(table_service, filter_query))
def get_data_from_table_storage_table(table_service, filter_query):
# Retrieve data from Table Storage
for record in table_service.query_entities(os.environ.get("source_table"), filter=filter_query):
yield record
def translate_to_spanish(input_text):
try:
translator= Translator(to_lang="es")
spanish_text = translator.translate(input_text)
return spanish_text
except Exception as e:
return str(e)
# Example usage:
#input_text = "Hello, how are you?"
#spanish_text = translate_to_spanish(input_text)
#print(spanish_text)
# UI components (using Gradio - https://gradio.app)
chatbot = gr.Chatbot(bubble_full_width = False)
with gr.Blocks() as sosChatBot:
with gr.Row():
statesArray = states
statesDropdown = gr.Dropdown(
statesArray, label="States", info="Choose your state"
),
with gr.Row():
chat_interface = gr.ChatInterface(fn=chat, chatbot=chatbot)
#sosChatBot.launch()