forked from kimwalisch/calculator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculator.hpp
391 lines (352 loc) · 9.79 KB
/
calculator.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// @file calculator.hpp
// @brief calculator::eval(const string&) evaluates an floating-point arithmetic expression and returns the result. If an error occurs a calculator::error exception is thrown.
// <https://github.com/jerboa88/calculator>
// @author Kim Walisch, <[email protected]>
// @copyright Copyright (C) 2018 John Goodliff / Copyright (C) 2013-2018 Kim Walisch
// @license BSD 2-Clause, https://opensource.org/licenses/BSD-2-Clause
// @version 1.4
//
// == Supported operators ==
//
// OPERATOR NAME ASSOCIATIVITY PRECEDENCE
//
// + Addition Left 10
// - Subtraction Left 10
// * or x Multiplication Left 20
// / Division Left 20
// % Modulo Left 20
// ** or ^ Raise to power Right 30
// e, E Scientific notation Right 40
//
// The operator precedence has been set according to (uses the C and C++ operator precedence): https://en.wikipedia.org/wiki/Order_of_operations
// Operators with higher precedence are evaluated before operators with relatively lower precedence.
//
// == Examples of valid expressions ==
//
// "65536 >> 15" = 2
// "2**16" = 65536
// "(0 + 0xDf234 - 1000)*3/2%999" = 828
// "-(2**2**2**2)" = -65536
// "(0 + ~(0xDF234 & 1000) *3) /-2" = 817
// "(2**16) + (1 << 16) >> 0X5" = 4096
// "5*-(2**(9+7))/3+5*(1 & 0xFf123)" = -109221
//
// == About the algorithm ==
//
// calculator::eval(string&) relies on the ExpressionParser class which is a simple C++ operator precedence parser with infix notation for integer arithmetic expressions.
// ExpressionParser has its roots in a JavaScript parser published at: http://stackoverflow.com/questions/28256/equation-expression-parser-with-precedence/114961#114961
// The same author has also published an article about his operator precedence algorithm at PerlMonks: http://www.perlmonks.org/?node_id=554516
#ifndef CALCULATOR_HPP
#define CALCULATOR_HPP
#include <algorithm>
#include <cctype>
#include <cstddef>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <string>
using namespace std;
namespace calculator {
// calculator::eval() throws a calculator::error if it fails to evaluate the expression string.
class error : public runtime_error {
public:
error(const string& expr, const string& message): runtime_error(message), expr_(expr) {}
#if __cplusplus < 201103L
~error() throw() {}
#endif
string expression() const {
return expr_;
}
private:
string expr_;
};
template <typename T>
class ExpressionParser {
public:
// Evaluate an integer arithmetic expression and return its result. @throw error if parsing fails.
T eval(const string& expr) {
T result = 0;
index_ = 0;
expr_ = expr;
try {
result = parseExpr();
if (!isEnd()) {
unexpected();
}
}
catch (const calculator::error&) {
while (!stack_.empty()) {
stack_.pop();
}
throw;
}
return result;
}
// Get the integer value of a character.
T eval(char c) {
string expr(1, c);
return eval(expr);
}
private:
enum {
OPERATOR_NULL,
OPERATOR_ADDITION, // +
OPERATOR_SUBTRACTION, // -
OPERATOR_MULTIPLICATION, // * or x
OPERATOR_DIVISION, // /
OPERATOR_MODULO, // %
OPERATOR_POWER, // ** or ^
OPERATOR_EXPONENT // e, E
};
struct Operator {
// Operator, one of the OPERATOR_* enum definitions
int op;
int precedence;
// 'L' = left or 'R' = right
int associativity;
Operator(int opr, int prec, int assoc) : op(opr), precedence(prec), associativity(assoc) {}
};
struct OperatorValue {
Operator op;
T value;
OperatorValue(const Operator& opr, T val) : op(opr), value(val) {}
int getPrecedence() const {
return op.precedence;
}
bool isNull() const {
return op.op == OPERATOR_NULL;
}
};
// Expression string
string expr_;
// Current expression index, incremented whilst parsing
size_t index_;
// The current operator and its left value are pushed onto the stack if the operator on top of the stack has lower precedence.
stack<OperatorValue> stack_;
// Exponentiation by squaring, x^n.
static T pow(T x, T n) {
T res = 1;
while (n > 0) {
if (n % 2 != 0) {
res *= x;
n -= 1;
}
n /= 2;
if (n > 0)
x *= x;
}
return res;
}
T checkZero(T value) const {
if (value == 0) {
string divOperators("/%");
size_t division = expr_.find_last_of(divOperators, index_ - 2);
ostringstream msg;
msg << "Parser error: division by 0";
if (division != string::npos)
msg << " (error token is \""
<< expr_.substr(division, expr_.size() - division)
<< "\")";
throw calculator::error(expr_, msg.str());
}
return value;
}
T calculate(T v1, T v2, const Operator& op) const {
switch (op.op) {
case OPERATOR_ADDITION:
return v1 + v2;
case OPERATOR_SUBTRACTION:
return v1 - v2;
case OPERATOR_MULTIPLICATION:
return v1 * v2;
case OPERATOR_DIVISION:
return v1 / checkZero(v2);
case OPERATOR_MODULO:
return v1 % checkZero(v2);
case OPERATOR_POWER:
return pow(v1, v2);
case OPERATOR_EXPONENT:
return v1 * pow(10, v2);
default:
return 0;
}
}
bool isEnd() const {
return index_ >= expr_.size();
}
// Returns the character at the current expression index or 0 if the end of the expression is reached.
char getCharacter() const {
if (!isEnd()) {
return expr_[index_];
}
return 0;
}
// Parse str at the current expression index. @throw error if parsing fails.
void expect(const string& str) {
if (expr_.compare(index_, str.size(), str) != 0) {
unexpected();
}
index_ += str.size();
}
void unexpected() const {
ostringstream msg;
msg << "Syntax error: unexpected token \"" << expr_.substr(index_, expr_.size() - index_) << "\" at index " << index_;
throw calculator::error(expr_, msg.str());
}
// Eat all white space characters at the current expression index.
void eatSpaces() {
while (isspace(getCharacter()) != 0) {
index_++;
}
}
// Parse a binary operator at the current expression index. @return Operator with precedence and associativity.
Operator parseOp() {
eatSpaces();
switch (getCharacter()) {
case '+':
index_++;
return Operator(OPERATOR_ADDITION, 10, 'L');
case '-':
index_++;
return Operator(OPERATOR_SUBTRACTION, 10, 'L');
case '/':
index_++;
return Operator(OPERATOR_DIVISION, 20, 'L');
case '%':
index_++;
return Operator(OPERATOR_MODULO, 20, 'L');
case 'x':
index_++;
return Operator(OPERATOR_MULTIPLICATION, 20, 'L');
case '*':
index_++;
if (getCharacter() != '*') {
return Operator(OPERATOR_MULTIPLICATION, 20, 'L');
}
index_++;
return Operator(OPERATOR_POWER, 30, 'R');
case '^':
index_++;
return Operator(OPERATOR_POWER, 30, 'R');
case 'e':
index_++;
return Operator(OPERATOR_EXPONENT, 40, 'R');
case 'E':
index_++;
return Operator(OPERATOR_EXPONENT, 40, 'R');
default:
return Operator(OPERATOR_NULL, 0, 'L');
}
}
static T toInteger(char c) {
if (c >= '0' && c <= '9') {
return c - '0';
}
if (c >= 'a' && c <= 'f') {
return c - 'a' + 0xa;
}
if (c >= 'A' && c <= 'F') {
return c - 'A' + 0xa;
}
T noDigit = 0xf + 1;
return noDigit;
}
T getInteger() const {
return toInteger(getCharacter());
}
T parseDecimal() {
T value = 0;
for (T d; (d = getInteger()) <= 9; index_++) {
value = value * 10 + d;
}
return value;
}
// Parse an integer value at the current expression index. The unary `+', `-' and `~' operators and opening parentheses `(' cause recursion.
T parseValue() {
T val = 0;
eatSpaces();
switch (getCharacter()) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
val = parseDecimal();
break;
case '(':
index_++;
val = parseExpr();
eatSpaces();
if (getCharacter() != ')') {
if (!isEnd()) {
unexpected();
}
throw calculator::error(expr_, "Syntax error: `)' expected at end of expression");
}
index_++;
break;
case '+':
index_++;
val = parseValue();
break;
case '-':
index_++;
val = parseValue() * static_cast<T>(-1);
break;
default:
if (!isEnd()) {
unexpected();
}
throw calculator::error(expr_, "Syntax error: value expected at end of expression");
}
return val;
}
// Parse all operations of the current parenthesis level and the levels above, when done return the result (value).
T parseExpr() {
stack_.push(OperatorValue(Operator(OPERATOR_NULL, 0, 'L'), 0));
// first parse value on the left
T value = parseValue();
while (!stack_.empty()) {
// parse an operator (+, -, *, ...)
Operator op(parseOp());
while (op.precedence < stack_.top().getPrecedence() || (op.precedence == stack_.top().getPrecedence() && op.associativity == 'L')) {
// end reached
if (stack_.top().isNull()) {
stack_.pop();
return value;
}
// do the calculation ("reduce"), producing a new value
value = calculate(stack_.top().value, value, stack_.top().op);
stack_.pop();
}
// store on stack_ and continue parsing ("shift")
stack_.push(OperatorValue(op, value));
// parse value on the right
value = parseValue();
}
return 0;
}
};
template <typename T>
inline T eval(const string& expression) {
ExpressionParser<T> parser;
return parser.eval(expression);
}
template <typename T>
inline T eval(char c) {
ExpressionParser<T> parser;
return parser.eval(c);
}
inline int eval(const string& expression) {
return eval<int>(expression);
}
inline int eval(char c) {
return eval<int>(c);
}
} // namespace calculator
#endif