@@ -48,27 +48,30 @@ x = record { fst = Zero; snd = Suc Zero }
4848x' : Pair Nat Nat
4949x' = Pair.constructor Zero (Suc Zero)
5050
51- y : Pair Nat Bool
52- y = record { fst = Pair.fst x; snd = False }
51+ proj_example : Nat
52+ proj_example = Pair.fst x
5353
54- z : PairExplCon Nat Nat
55- z = _,_ Zero (Suc Zero)
54+ -- y : Pair Nat Bool
55+ -- y = record { fst = Pair.fst x; snd = False }
5656
57- -- (diode-lang): I don't think this statement is actually provable, because we have turned off eta-equality
58- -- eta-R-two_expl : (A B : Set) (x : PairNoEta A B) →
59- -- x ≡ record { fst = PairNoEta.fst x ; snd = PairNoEta.snd x }
60- -- eta-R-two_expl = λ A B → λ x → {!!}
57+ -- z : PairExplCon Nat Nat
58+ -- z = _,_ Zero (Suc Zero)
6159
60+ -- eta-R-two : (A B : Set) (x : Pair A B) →
61+ -- x ≡ record { fst = (const (Pair A B → A) Pair.fst Pair.fst) x ; snd = Pair.snd x }
62+ -- eta-R-two = λ A B → λ x → refl
6263
63- eta-R-two : (A B : Set ) (x : Pair A B) →
64- x ≡ record { fst = (const (Pair A B → A) Pair.fst Pair.fst) x ; snd = Pair.snd x }
65- eta-R-two = λ A B → λ x → refl
66-
67- eta-R-two-expl-con : (A B : Set ) (x : PairExplCon A B) →
68- x ≡ (_,_ (const (PairExplCon A B → A) PairExplCon.fstE PairExplCon.fstE x) (PairExplCon.sndE x))
69- eta-R-two-expl-con = λ A B → λ x → refl
64+ -- eta-R-two-expl-con : (A B : Set) (x : PairExplCon A B) →
65+ -- x ≡ (_,_ (const (PairExplCon A B → A) PairExplCon.fstE PairExplCon.fstE x) (PairExplCon.sndE x))
66+ -- eta-R-two-expl-con = λ A B → λ x → refl
7067
7168-- eta-R-two : (A B : Set) (x : Pair A B) →
7269-- x ≡ record { fst = (const (Pair A B → A) Pair.fst Pair.fst) x ; snd = Pair.snd x }
7370-- eta-R-two = λ A B → λ x → {!!}
7471
72+ -- (diode-lang): I don't think this statement is actually provable, because we have turned off eta-equality
73+ -- eta-R-two_expl : (A B : Set) (x : PairNoEta A B) →
74+ -- x ≡ record { fst = PairNoEta.fst x ; snd = PairNoEta.snd x }
75+ -- eta-R-two_expl = λ A B → λ x → {!!}
76+
77+
0 commit comments