@@ -15,18 +15,6 @@ Id = λ A x y → (P : A → Set) → P x → P y
1515refl : (A : Set ) (x : A) → Id A x x
1616refl = λ A x P p → p
1717
18- id_typ : Set → Set
19- id_typ = λ A → A
20-
21- s : Set → Set
22- s = λ typ → id_typ typ
23-
24- s' : (Set → Set ) → Set → Set
25- s' = λ f → λ typ → f typ
26-
27- id : (A : Set ) → A → A
28- id = λ A x → x
29-
3018idbool : Bool → Bool
3119idbool = λ b → b
3220
@@ -43,19 +31,25 @@ addTwo = λ x → (suc (suc x))
4331addTwoAfterAddOne : Nat → Nat
4432addTwoAfterAddOne = λ x → (comp Nat Nat Nat addTwo addOne x)
4533
46-
47- -- eta-functions : {A B : Set} (f : A → B) → (f ≡ (λ x → f x))
48- -- eta-functions = λ h → refl
49-
5034eta-functions_expl : (A B : Set ) (f : A → B) → (Id (A → B) f (λ x → f x))
5135eta-functions_expl = λ A B → λ f → refl (A → B) f
5236
5337eta-functions_two : (A B C : Set ) (f : B → C) → (g : A → B) → (Id (A → C) (comp A B C f g) (λ x → (comp A B C f g) x))
5438eta-functions_two = λ A B C → λ f → λ g → refl (A → C) (comp A B C f g)
5539
40+ -- apply : (A B : Set) → (A → B) → A → B
41+ -- apply = λ A B → λ f → λ x → f x
42+
43+ -- eta-apply : (A B : Set) → (f : A → B) → Id (apply f) f
44+
45+
46+ eta-counterexample : Id (Nat → Nat) addTwoAfterAddOne (λ x → (comp Nat Nat Nat addTwo addOne) x)
47+ eta-counterexample = refl (Nat → Nat) addTwoAfterAddOne
48+
49+
50+ eta-counterexample-simple : Id (Nat → Nat) addOne (λ y → (λ x → (suc x)) y)
51+ eta-counterexample-simple = refl (Nat → Nat) addOne
5652
57- test : Id addTwoAfterAddOne (λ x → (comp Nat Nat Nat addTwo addOne) x)
58- test = refl
5953
6054-- eta-higher : (A B C : Set) → (f : A → B → C) → Id (λ x → λ y → f x y) f
6155-- eta-higher = λ A B C → λ f → refl
0 commit comments