File tree Expand file tree Collapse file tree 2 files changed +39
-5
lines changed
Expand file tree Collapse file tree 2 files changed +39
-5
lines changed Original file line number Diff line number Diff line change @@ -15,10 +15,10 @@ data Nat : Set where
1515comp : (A B C : Set ) → (B → C) → (A → B) → A → C
1616comp = λ (A B C : Set ) → λ f → λ g → λ x → f (g x)
1717
18- const : ( A : Set ) → A → A → A
19- const = λ A → λ x → λ y → x
18+ const : { A : Set } → A → A → A
19+ const = λ x → λ y → x
2020
21- addOne : Nat -> Nat
21+ addOne : Nat → Nat
2222addOne = suc
2323
2424addTwo : Nat → Nat
@@ -27,9 +27,9 @@ addTwo = λ x → (suc (suc x))
2727addTwoAfterAddOne : Nat → Nat
2828addTwoAfterAddOne = λ x → (comp Nat Nat Nat addTwo addOne x)
2929
30- eta-higher : (A B C : Set ) → (f : A → B → C) → (λ x → λ y → f (const A x x) y) ≡ f
30+ eta-higher : (A B C : Set ) → (f : A → B → C) → (λ x → λ y → f (const x x) y) ≡ f
3131eta-higher = λ A B C → λ f → refl
3232
33- eta-counterexample-simple : addOne ≡ (λ x → (suc (const Nat x x)))
33+ eta-counterexample-simple : addOne ≡ (λ x → (suc (const x x)))
3434eta-counterexample-simple = refl
3535
Original file line number Diff line number Diff line change 1+ module EtaFunctionsExplDefArg where
2+
3+ data _≡_ {A : Set } (x : A) : A → Set where
4+ refl : x ≡ x
5+
6+ data Nat : Set where
7+ zero : Nat
8+ suc : Nat → Nat
9+
10+ -- postulate
11+ -- _≡_ : {A : Set} (x : A) → A → Set
12+ -- refl : {A : Set} {x : A} → x ≡ x
13+
14+ -- Composition operator ∘
15+ comp : (A B C : Set ) → (B → C) → (A → B) → A → C
16+ comp = λ (A B C : Set ) → λ f → λ g → λ x → f (g x)
17+
18+ const : (A : Set ) → A → A → A
19+ const = λ A → λ x → λ y → x
20+
21+ addOne : Nat -> Nat
22+ addOne = suc
23+
24+ addTwo : Nat → Nat
25+ addTwo = λ x → (suc (suc x))
26+
27+ addTwoAfterAddOne : Nat → Nat
28+ addTwoAfterAddOne = λ x → (comp Nat Nat Nat addTwo addOne x)
29+
30+ eta-higher : (A B C : Set ) → (f : A → B → C) → (λ x → λ y → f (const A x x) y) ≡ f
31+ eta-higher = λ A B C → λ f → refl
32+
33+ eta-counterexample-simple : addOne ≡ (λ x → (suc (const Nat x x)))
34+ eta-counterexample-simple = refl
You can’t perform that action at this time.
0 commit comments