-
Notifications
You must be signed in to change notification settings - Fork 93
Open
Description
I want to use TVM backend to compare runtime of TASO`s like above code.
def evaluate_runtime(onnx_model):
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
lib = relay.build_module.build(mod, target=target, params=params)
dev = tvm.device(str(target), 0)
module = graph_executor.GraphModule(lib["default"](dev))
module.set_input(input_name, input_data)
#module.run()
use_tvm_time = (
np.array(timeit.Timer(lambda: module.run()).repeat(repeat=timing_repeat, number=timing_number))
* 1000
/ timing_number
)
use_tvm_time = {
"mean": np.mean(use_tvm_time),
"median": np.median(use_tvm_time),
"std": np.std(use_tvm_time),
}
print(use_tvm_time)
Take resnet50 as an example. I get the original resnet onnx model and optimized model by TASO.
This function works fine when i put the original model in, but get error to optimized model.
Error message:
The Relay type checker is unable to show the following types match:
Tensor[(64, 160, 3, 3), float32]
Tensor[(64, 64, 3, 3), float32]
In particular:
dimension 1 conflicts: 160 does not match 64.
The Relay type checker is unable to show the following types match.
In particular `Tensor[(64, 64, 3, 3), float32]` does not match `Tensor[(64, 160, 3, 3), float32]`
I am confused and don`t konw how to do.
Metadata
Metadata
Assignees
Labels
No labels