-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobability.tex
3613 lines (2975 loc) · 153 KB
/
probability.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[openany,12pt]{book}
% \\begin\{([a-z]*)\}\{(.*)\}\{.*\}
% \begin{$1}[$2]
\usepackage[left=3cm,right=3cm,top=3cm,bottom=3cm]{geometry}
\usepackage{amsmath,amssymb,amsthm,bm}
\usepackage{tnptimes}
\usepackage{enumitem}
\setlist[enumerate,1]{label=(\roman*), ref=(\roman*)}
\usepackage{titlesec}
\titleformat{\chapter}[display]{\normalfont\huge\bfseries\centering}{\chaptertitlename~\thechapter}{20pt}{\Huge}
\usepackage{hyperref}
\hypersetup{
breaklinks,
colorlinks = true,
citecolor = blue,
linkcolor = black,
urlcolor = magenta,
}
\newtheorem{theorem}{Theorem}[chapter]
\newtheorem{corollary}{Corollary}[chapter]
\newtheorem{assumption}{Assumption}[chapter]
\newtheorem{remark}{Remark}[chapter]
\newtheorem{lemma}{Lemma}[chapter]
\newtheorem{definition}{Definition}[chapter]
% \makeatletter
% \def\thanks#1{
% \protected@xdef\@thanks{
% \@thanks\protect\footnotetext{#1}
% }
% }
% \makeatother
\input{settings.tex}
\title{\Huge\textbf{Probability}}
\author{\href{https://www.jingxuanyang.com/}{Jingxuan Yang}}
\date{\today}
\begin{document}
\frontmatter
\maketitle
\tableofcontents
\chapter*{Preface}
Currently, most of the material in this book comes from the lecture notes of \href{https://www.ee.nthu.edu.tw/jcheng/}{Professor Jay Cheng}. The proofs of theorems are not included yet, which warrants further efforts in the future.
\mainmatter
\chapter{Axioms of Probability}
\begin{definition}[Sample Space]
The sample space $\Omega$ of an experiment is the set of all possible outcomes of the experiment.
\end{definition}
\begin{definition}[Event]
An event of an experiment is a subset of the sample space $\Omega$ of the experiment. We call $\Omega$ the certain event and $\varnothing$ the impossible event of the experiment. We say that an event $A$ occurs if the outcome of the experiment belongs to $A$.
\end{definition}
\begin{definition}[$\sigma$-algebra]
A $\sigma$-algebra $\ma$ of subsets of a sample space $\Omega$ is a collection of subsets of $\Omega$ such that
\begin{enumerate}
\item $\Omega\in\ma$,
\item $\ma$ is closed under complementation, i.e., if $A\in\ma$, then $\Omega\setminus A\in\ma$,
\item $\ma$ is closed under countable union, i.e., if $A_n\in\ma$ for $n=1,2,\dots$, then $\cup_{n=1}^\infty A_n \in\ma$.
\end{enumerate}
\end{definition}
\begin{theorem}[Properties of $\sigma$-algebra]
Suppose $\ma$ is a $\sigma$-algebra of subsets of a sample space $\Omega$.
\begin{enumerate}
\item $\varnothing\in\ma$,
\item $\ma$ is closed under finite union,
\item $\ma$ is closed under countable and finite intersection.
\end{enumerate}
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Intersection of $\sigma$-algebras]
Suppose $\Gamma$ is a nonempty collection of $\sigma$-algebras of subsets of a sample space $\Omega$. Then the intersection $\mb=\cap_{\ma\in\Gamma}\ma$ of the $\sigma$-algebras in $\Gamma$ is also a $\sigma$-algebra of subsets of $\Omega$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Existence of Smallest $\sigma$-algebra]
Suppose $\mathcal{C}$ is a collection of subsets of a sample space $\Omega$. Then there exists a smallest $\sigma$-algebra of subsets of $\Omega$ including $\mathcal{C}$.
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{definition}[Generated $\sigma$-algebra]
Let $\mathcal{C}$ be a collection of subsets of a sample space $\Omega$, we define the $\sigma$-algebra of subsets of $\Omega$ generated by $\mathcal{C}$ as the smallest $\sigma$-algebra of subsets of $\Omega$ including $\mathcal{C}$ and denote it as $\sigma$($\mathcal{C}$).
\end{definition}
\begin{definition}[Probability Measure]
Let $\ma$ be a $\sigma$-algebra of subsets of a sample space $\Omega$, a probability measure $\mathbb{P}:\ma\to\mr$ on $\ma$ is a real-valued function on $\ma$ such that
\begin{enumerate}
\item Nonnegativity: $\mathbb{P}(A)\gs0$, $\forall A\in\ma$,
\item Normalization: $\mathbb{P}(\Omega)=1$,
\item Countable additivity: If $A_1,A_2,\dots$ are pairwise disjoint events in $\ma$ then $$\mathbb{P}\left(\bigcup_{n=1}^\infty A_n \right)=\sumn \mathbb{P}(A).$$
\end{enumerate}
For an event $A\in\ma$, we call $\mathbb{P}(A)$ the probability of the event $A$.
\end{definition}
\begin{definition}[Probability Space]
A probability space is an ordered triple $(\Omega,\ma,\mathbb{P})$ consisting of a sample space $\Omega$, a $\sigma$-algebra $\ma$ of subsets of $\Omega$, and a probability measure $\mathbb{P}$ on $\ma$.
\end{definition}
\begin{theorem}[A Kind of Probability Measure]
Suppose $\Omega=\{\omega_1,\omega_2,\dots\}$, $\ma=\mathcal{P}(\Omega)$ and $\mathbb{P}(A)=\sum_{\omega_i\in\ma}P_i$, for all $A\in\mathcal{P}(\Omega)$, where $P_i\gs0$, $\forall i=1,2,\dots$, and $\sumi P_i =1$, then $\mathbb{P}$ is a probability measure on $\mathcal{P}(\Omega)$. A similar result holds if $\Omega=\{\omega_1,\omega_2,\dots,\omega_N\}$, where $N\gs1$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[A Kind of Probability Measure (special)]
Suppose $\Omega=\{\omega_1,\omega_2, \cdots,\omega_N\}$, $\ma=\mathcal{P}(\Omega)$, and $\mathbb{P}(A)=\frac{|A|}{N}$ for all $A\in\mathcal{P}(\Omega)$, then $\mathbb{P}$ is a probability measure on $\mathcal{P}(\Omega)$.
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Classical definition of probability]
Suppose $\Omega=\{\omega_1,\omega_2, \cdots,\omega_N\}$, $\ma=\mathcal{P}(\Omega)$ and $\mathbb{P}$ is a probability measure on $\mathcal{P}(\Omega)$ such that $\mathbb{P}({\omega_1})=\mathbb{P}({\omega_2})=\cdots=\mathbb{P}({\omega_N})$, then $\mathbb{P}(A)=\frac{|A|}{N}$ for all $A\in\mathcal{P}(\Omega)$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Properties of Probability Measure]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space.
\begin{enumerate}
\item $\mathbb{P}(\varnothing)=0$.
\item $\mathbb{P}(A)+\mathbb{P}(A^c)=1$. Therefore, $0\ls\mathbb{P}(A)\ls1$, for all $A\in\ma$.
\item Finite additivity: If $A_1,A_2,\dots,A_N$ are pairwise disjoint events in $A$, then $$\mathbb{P}\left(\bigcup_{n=1}^NA_n \right)=\sum_{n=1}^N\mathbb{P}(A).$$
\end{enumerate}
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Properties of Probability Measure]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A,B\in\ma$.
\\
(1) If $A_1,A_2,\cdots$ are pairwise disjoint events on $A$ and
$$ \bigcup_{n=1}^\infty A_n =\Omega,$$ then
$$\mathbb{P}(A)= \sumi \mathbb{P}\left(A \cap A_n \right).$$
(2) If $B\subseteq A$, then $\mathbb{P}(A)=\mathbb{P}(A\cap B)+\mathbb{P}(A\cap A^c )$ for all $A,B\in\ma$.\\
(3) $\mathbb{P}(A\cap B) \ls \min \{\mathbb{P}(A),\mathbb{P}(B)\} \ls \max\{ \mathbb{P}(A),\mathbb{P}(B)\} \ls \mathbb{P}(A\cup B)$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Finite Additivity under Union]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, $A\in\ma$, $A_1,A_2,\cdots$ are pairwise disjoint events in $\ma$, and $$\mathbb{P}\left(\bigcup_{n=1}^\infty A_n \right)=1,$$ then
$$\mathbb{P}(A)=\sum_{n=1}^\infty \mathbb{P}\left(A\cap A_n \right).$$
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Inclusion-exclusion Identity]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A_1,A_2, \cdots,A_n\in\ma $, where $n \gs2$, then $$\mathbb{P}\left(\bigcup_{i=1}^n A_i \right)=\sumkfn(-1)^{k+1}\cdot \sum_{1\ls i_1<i_2<\cdots<i_k\ls n}\mathbb{P}\left(A_{i_1} \cap A_{i_2 } \cap\cdots\cap A_{i_k } \right).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{lemma}[Generated Pairwise Disjoint]
Suppose $\ma$ is a $\sigma$-algebra of subsets of a sample space $\Omega$, suppose $A_1,A_2,\cdots\in\ma$, $B_1=A_1$, and $$B_n=A_n\setminus\bigcup_{i=1}^{n-1}A_i$$ for all $n\gs2$, then $B_1,B_2,\cdots$ are pairwise disjoint events in $\ma$, $$\bigcup_{i=1}^nA_i =\bigcup_{i=1}^nB_i$$ for all $n\gs1$, and $$\bigcup_{n=1}^\infty A_n =\bigcup_{n=1}^\infty B_n.$$
\end{lemma}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Inclusion-exclusion Inequality]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A_1,A_2, \cdots,A_n\in\ma$, where $n\gs2$, then
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i \right)
\begin{cases}
\ls\sum_{k=1}^m(-1)^{k+1}\cdot \sum_{1\ls i_1<i_2<\cdots<i_k\ls n}\mathbb{P}\left(A_{i_1} \bigcap A_{i_2 } \bigcap\cdots\bigcap A_{i_k } \right),& \text{if $m$ is odd}\\
\gs\sum_{k=1}^m(-1)^{k+1}\cdot \sum_{1\ls i_1<i_2<\cdots<i_k\ls n}\mathbb{P}\left(A_{i_1} \bigcap A_{i_2 } \bigcap\cdots\bigcap A_{i_k } \right),& \text{if $m$ is even}
\end{cases}
$$
where $1\ls m\ls n$.\\
In particular,
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i \right)\ls\sumin \mathbb{P}(A_i),$$
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i \right)\gs\sumin \mathbb{P}(A_i)-
\sum_{1\ls i<j\ls n}\mathbb{P}\left(A_i\cap A_j\right).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Boole's Inequality]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A_1,A_2,\cdots\in\ma$, then
$$\mathbb{P}\left(\bigcup_{i=1}^\infty A_i \right)\ls\sum_{i=1}^\infty \mathbb{P}(A_i ).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Monotonicity]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space.
A sequence $\{A_1,A_2,\cdots\}$ of events in $A$ is increasing if $A_1\subseteq A_2\subseteq\cdots$.
A sequence $\{A_1,A_2,\cdots\}$ of events in $A$ is decreasing if $A_1\supseteq A_2\supseteq\cdots$.
\end{definition}
\begin{definition}[Limit of Events]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space.\\
(1) The limit $\limn A_n$ of an increasing sequence $\{A_1,A_2,\cdots\}$ of events in $A$ is the event that at least one of the events occurs, i.e., $$\limn A_n=\bigcup_{n=1}^\infty A_n.$$
(2) The limit $\limn A_n$ of a decreasing sequence $\{A_1,A_2,\cdots\}$ of events in $A$ is the event that all the events occur, i.e., $$\limn A_n=\bigcap_{n=1}^\infty A_n.$$
\end{definition}
\begin{theorem}[Continuity of Probability Measure]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space.\\
(1) Suppose that $\{A_1,A_2,\cdots\}$ is an increasing sequence of events in $A$. Then $$\mathbb{P}\left(\limn A_n\right)=\limn \mathbb{P}(A_n).$$
(2) Suppose that $\{A_1,A_2,\cdots\}$ is a decreasing sequence of events in $A$. Then $$\mathbb{P}\left(\limn A_n\right)=\limn \mathbb{P}(A_n).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{remark}[Not Necessary]
If $\mathbb{P}(A)=0$, then it is not necessary that $A=\varnothing$, e.g., $\Omega=(0,1)$ and $A=A_\alpha, \alpha\in(0,1)$.
If $\mathbb{P}(A)=1$, then it is not necessary that $A=\Omega$, e.g., $\Omega=(0,1)$ and $A=A_\alpha^c, \alpha\in(0,1)$.
\end{remark}
\begin{definition}[Length]
The length of the intervals $(a,b), [a,b), (a,b], [a,b]$ are defined to be $(b-a)$.
\end{definition}
\begin{definition}[Random]
A point is said to be randomly selected from an interval $(a,b)$ if any subintervals of $(a,b)$ with the same length are equally likely to contain the randomly selected point.
\end{definition}
\begin{theorem}[Probability of Randomness]
The probability that a randomly selected point from $(a,b)$ falls in the subinterval $(\alpha,\beta)$ of $(a,b)$ is $$\mathbb{P}=\frac{\beta-\alpha}{b-a}.$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Borel Algebra]
The $\sigma$-algebra of subsets of $(a,b)$ generated by the set of all subintervals of $(a,b)$ is called Borel algebra associated with $(a,b)$ and is denoted $\mathcal{B}_{(a,b)}$.
\end{definition}
\begin{theorem}[Existence of Probability Measure]
For any interval $(a,b)$, there exists a unique probability measure $\mathbb{P}$ on $\mathcal{B}_{(a,b)}$ s.t., $$\mathbb{P}((\alpha,\beta))=\frac{\beta-\alpha}{b-a},$$
for all $(\alpha,\beta)\subseteq(a,b)$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\chapter{Combinational Methods}
\begin{theorem}[Counting Principle]
There are $n_1\times n_2\times\cdots\times n_k$ different ways in which we can first choose an element from a set of $n_1$ elements, then an element from a set of $n_2$ elements,..., and finally an element from a set of $n_k$ elements.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Permutation]
An ordered arrangement of $r$ objects from a set $A$ containing $n$ objects is called an $r$-arrangement permutation of $A$, where $0\ls r\ls n$.
An $n$-element permutation of $A$ is called a permutation of $A$. The number of different $r$-permutation permutations of $A$ is given by $$_nP_r =n\times(n-1)\times(n-2)\times\cdots\times(n-r+1)=\frac{n!}{(n-r)!}.$$
\end{definition}
\begin{theorem}[Permutation with Types]
The number of different (w.r.t. types) permutations of $n$ objects of $k$ different types is $$\frac{n!}{n_1 !\times n_2 !\times\cdots\times n_k !},$$
where $n_1$ are alike, $n_2$ are alike,..., $n_k$ are alike, and $n=n_1+n_2+\cdots+n_k $.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Combination]
An unordered arrangement of $r$ objects from a set $A$ containing $n$ objects is called an $r$-element combination of $A$. The number of different $r$-element combinations of $A$ is given by
$$_n C_r =\binom n r=\frac{_n P_r}{r!}=\frac{n!}{(n-r)!r!}.$$
\end{definition}
\begin{theorem}[Property of Combination]
$$\sum_{i=0}^k\binom {n+i} i=\sum_{i=0}^k \binom {n+i} n
=\binom {n+k+1} k$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Multinomial Expansion]
$$(x_1+x_2+\cdots+x_k )^n=\sum_
{\mbox{\tiny $\begin{aligned}
&n_1+n_2+\cdots+n_k=n \\
&n_1,n_2, \cdots,n_k\gs0
\end{aligned}$}}
\frac{n!}{n_1 !\times n_2 !\times\cdots\times n_k !}\cdot x_1^{n_1 } x_2^{n_2 }\cdots x_k^{n_k},\forall n\gs0.$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Binomial Expansion]
$$(x+y)^n=\sumin\binom n i x^i y^{n-i},~\forall n\gs 0.$$
\end{corollary}
\begin{theorem}[Stirling's Formula]
$$\sqrt{2\pi n}
\left(\frac{n}{e}\right)^n
\cdot
\exp\left(\frac{1}{12n}-\frac{1}{360 n^2 }\right)
<n!
<\sqrt{2\pi n}
\left(\frac{n}{e}\right)^n
\cdot\exp\left(\frac{1}{12n}\right),
\forall n\gs1.$$
Therefore,
$$n!\sim\sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \text{i.e.}, \limn \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}=1.$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\chapter{Conditional Probability and Independence}
\begin{definition}[Conditional Probability]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space, and $A,B\in\ma$. The conditional probability of $A$ given $B$, denoted $\mathbb{P}(A|B)$, is given by
$$\mathbb{P}(A|B)=
\begin{cases}
\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}, \text{if} \mathbb{P}(B)>0, \\
\qquad 0 ,\qquad \text{if} \mathbb{P}(B)=0.
\end{cases}
$$
\end{definition}
\begin{remark}[Property of Conditional Probability]
$$\mathbb{P}\left(A\cap B\right)=\mathbb{P}(B)\cdot \mathbb{P}(A|B),\forall A,B\in\ma.$$
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Conditional Probability Space]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $\mathbb{P}(B)>0$, for some $B\in\ma$.
Then the conditional probability function $\mathbb{P}(\cdot|B): \ma\to\mr$ is a probability measure on $\ma$, and hence $(\Omega,\ma, \mathbb{P}(\cdot|B))$ is a probability space.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Reduction of Probability Space]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $\mathbb{P}(B)>0$, for some $B\in\ma$. Let $\ma_B:\{A\in\ma: A\subseteq B\}$ and $P_B (A)=\mathbb{P}(A|B)$ for all $A\in\ma_B$. Then $\ma_B$ is a $\sigma$-algebra of subsets of $B$ and $P_B$ is a probability measure on $\ma_B$, and hence $(B,\ma_B,P_B )$ is a probability space.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{remark}[Conversion of Reduced and Conditional Probability Space]
Note that $\mathbb{P}(A|B)=\mathbb{P}(A\cap B|B)=P_B (A\cap B),\forall A\in\ma.$
And $\mathbb{P}(A|B)=P_B (A)$, if $A\in\ma$ and $A\subseteq B$.
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Law of Multiplication]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and $A_1,A_2,\dots,A_n\in\ma$. Then $$\mathbb{P}\left(A_1\cap A_2\cap\cdots\cap A_n\right)=\mathbb{P}(A_1 )\mathbb{P}(A_2|A_1 )\cdots \mathbb{P}\left(A_n|A_1 \cap A_2\cap\cdots\cap A_{n-1}\right).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Law of Total Probability (infinite)]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $B_1,B_2,\cdots\in\ma$ are pairwise disjoint and $\bigcup_{n=1}^\infty B_n=\Omega$. Then,\\
(1) $\mathbb{P}(A)=\sumn \mathbb{P}(B_n )\cdot \mathbb{P}(A|B_n ),\forall A\in\ma$.\\
(2) $\mathbb{P}(A|B)=\sumn \mathbb{P}(B_n |B)\cdot \mathbb{P}(A|B\cap B_n ),\forall A,B\in\ma.$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Law of Total Probability (finite)]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $B_1,B_2,\cdots B_n\in\ma$ are pairwise disjoint and $\bigcup_{i=1}^n B_i=\Omega$. Then,\\
(1) $\mathbb{P}(A)=\sumin \mathbb{P}(B_i )\cdot \mathbb{P}(A|B_i ),\forall A\in\ma$.\\
(2) $\mathbb{P}(A|B)=\sumin \mathbb{P}(B_i |B)\cdot \mathbb{P}(A|B\cap B_i ),\forall A,B\in\ma.$
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Bayes' Theorem (infinite)]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $B_1,B_2,\cdots\in\ma$ are pairwise disjoint and $\bigcup_{n=1}^\infty B_n=\Omega$. Then $$\mathbb{P}(B_k|A)=\frac{\mathbb{P}(B_k)\cdot \mathbb{P}(A|B_k)}{\sumn \mathbb{P}(B_n )\cdot \mathbb{P}(A|B_n )},\forall A\in\ma, \mathbb{P}(A)>0,k=1,2,\dots$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Bayes' Theorem (finite)]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $B_1,B_2,\cdots B_n\in\ma$ are pairwise disjoint and $\bigcup_{i=1}^n B_i=\Omega$. Then $$\mathbb{P}(B_k|A)=\frac{\mathbb{P}(B_k)\cdot \mathbb{P}(A|B_k)}{\sumin \mathbb{P}(B_i )\cdot \mathbb{P}(A|B_i )},\forall A\in\ma, \mathbb{P}(A)>0,k=1,2, \cdots,n$$
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Properties of Conditional Probability]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A,B\in\ma$.
(1) $\mathbb{P}(A|B)>\mathbb{P}(A)\Leftrightarrow \mathbb{P}(A\cap B)>\mathbb{P}(A)\cdot \mathbb{P}(B)\Leftrightarrow \mathbb{P}(B|A)>\mathbb{P}(B)$
$\begin{aligned}
\text{(2) }\mathbb{P}(A|B)<\mathbb{P}(A),\mathbb{P}(B)>0&\Leftrightarrow \mathbb{P}\left(A\cap B\right)<\mathbb{P}(A)\cdot \mathbb{P}(B)\\
&\Leftrightarrow \mathbb{P}(B|A)<\mathbb{P}(B),\mathbb{P}(A)>0
\end{aligned}$
(3) $\mathbb{P}(A|B)=\mathbb{P}(A)\to \mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot \mathbb{P}(B)$
$\quad \mathbb{P}(A\cap B)=\mathbb{P}(A)\cap \mathbb{P}(B), \mathbb{P}(A)=0$ or $\mathbb{P}(B)>0\to \mathbb{P}(A|B)=\mathbb{P}(A)$
If $\mathbb{P}(A)=0$ or $\mathbb{P}(B)>0$, then $\mathbb{P}(A|B)=\mathbb{P}(A)\Leftrightarrow \mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot \mathbb{P}(B) $
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Independence]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space, and $A,B\in\ma$.
If $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot \mathbb{P}(B)$, then $A$ and $B$ are said to be independent, denoted $A\perp B$. If $A$ and $B$ are not independent, they are said to be dependent.
Furthermore, if $\mathbb{P}(A|B)>\mathbb{P}(A)$, then $A$ and $B$ are said to be positively correlated, and if $\mathbb{P}(A|B)<\mathbb{P}(A)$, then $A$ and $B$ are said to be negatively correlated.
\end{definition}
\begin{theorem}[Properties of Independence]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A,B\in\ma$.
(1) If $\mathbb{P}(A)=0$ or $\mathbb{P}(A)=1$, then $A\perp B, \forall B\in\ma$.
(2) If $A\subseteq B$ and $A\perp B$, then either $\mathbb{P}(A)=0$ or $\mathbb{P}(B)=1$.
(3) If $A$ and $B$ are disjoint and $\mathbb{P}(A)>0$, $\mathbb{P}(B)>0$, then they are dependent.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Independence of Two Events]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A,B\in\ma$, and $A\perp B$.
Then $A^*\perp B^*$, i.e., $\mathbb{P}(A^*\cap B^* )=\mathbb{P}(A^* )\cdot \mathbb{P}(B^* ),\forall A^*=A, A^c; B^*=B, B^c$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Conditional Probability with Independence]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A,B\in\ma$, and $A\perp B$.
If $\mathbb{P}(B)>0$, then $\mathbb{P}(A^*|B)=\mathbb{P}(A^* ),\forall A^*=A, A^c$.\\
If $\mathbb{P}(B)<1$, then $\mathbb{P}(A^*|B^c )=\mathbb{P}(A^* ),\forall A^*=A, A^c$.
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{remark}[Conditional Probability with Independence]
If $A\perp B$ and $\mathbb{P}(B)>0$, then knowledge about the occurrence of $B$ does not change the probability of the occurrence of $A^*$.
If $A\perp B$ and $\mathbb{P}(B)<1$, then knowledge about the occurrence of $B^c$ does not change the probability of the occurrence of $A^*$.
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{definition}[Independent Set]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space, and $A_1,A_2, \cdots,A_n\in\ma$, where $n\gs2$.\\
If $\mathbb{P}\left(A_{i_1}\bigcap A_{i_2}\bigcap\cdots\bigcap A_{i_k}\right)=\mathbb{P}(A_{i_1} )\mathbb{P}(A_{i_2})\cdots \mathbb{P}(A_{i_k } ),\forall 2\ls k\ls n$,
$$ \#=\sum_{k=2}^n \binom n k=2^n-n-1,1\ls i_1<i_2<\cdots<i_k\ls n,\#:= \text{number}.$$
Then $A_1,A_2, \cdots,A_{n }$ are said to be independent; otherwise, they are said to be dependent.
\end{definition}
\begin{remark}[Sub Independent Set]
If $A_1,A_2, \cdots,A_n\in\ma$ are independent, then $A_{i_2},A_{i_2}, \cdots,A_{i_k}$ are independent, $\forall 2\ls k\ls n, 1\ls i_1<i_2<\cdots <i_k\ls n$.
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Equivalent Statements of Independence]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, $A_1,A_2, \cdots,A_n\in\ma$, where $n\gs2$. The following statements are equivalent:
(1) $A_1,A_2, \cdots,A_n$ are independent.
(2) $\mathbb{P}\left(A_{i_1}^*\bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_k}^*\right)=\mathbb{P}\left(A_{i_1}^*\right) \mathbb{P}\left(A_{i_2}^* \right)\cdots \mathbb{P}\left(A_{i_k}^* \right), \forall 2\ls k\ls n,$
$\quad 1\ls i_1<i_2<\cdots <i_k\ls n, A_{i_r}^*=A_{i_r}$ or $A_{i_r}^c$.
(3) $\mathbb{P}\left(A_{i_1}^*\bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_n}^*\right)=\mathbb{P}\left(A_{i_1}^* \right)\mathbb{P}\left(A_{i_2}^* \right)\cdots \mathbb{P}\left(A_{i_n}^* \right), \forall A_i^*=A_i, A_i^c,$
$\quad i=1,2, \cdots,n$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Independent Set]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space, and $A_i\in\ma, \forall i\in I$, where $I$ is an index set, then $\{A_i: i\in I\}$ is said to be independent if any finite subset of $\{A_i: i\in I\}$ is independent; otherwise, it is said to be dependent.
\end{definition}
\begin{corollary}[Independence under Finite Union]
Suppose $(\Omega,\ma,\mathbb{P})$ is a probability space, and suppose $A_1,A_2, \cdots,A_n\in\ma$ are independent. Then
$$\begin{aligned}
&\mathbb{P}\left[\left(A_{i_1}^* \bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_k}^*\right)\bigcap\left(A_{j_1}^* \bigcap A_{j_2}^*\bigcap\cdots\bigcap A_{j_l}^* \right)\right] \\
=&\mathbb{P}\left(A_{i_1}^*\bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_k}^*\right)\cdot \mathbb{P}\left(A_{j_1}^*\bigcap A_{j_2}^*\bigcap\cdots\bigcap A_{j_l}^*\right)
\end{aligned}$$
$\forall k,l\gs1, k+l\ls n, 1\ls i_1,i_2, \cdots,i_k,j_1,j_2, \cdots,j_l\ls n$ distinct, and $A_{i_r}^*=A_{i_r}$ or $A_{i_r}^c, r=1,2, \cdots,k, A_{j_r}^*=A_{j_r}$ or $A_{j_r}^c, r=1,2, \cdots,l.$
In particular, if $\mathbb{P}\left(A_{j_1}^* \bigcap A_{j_2}^* \bigcap\cdots\bigcap A_{j_l}^*\right)>0$, for some $1\ls l\ls n-1, 1\ls j_1, \cdots,j_l\ls n$ distinct, and $A_{j_r}^*=A_{j_r}$ or $A_{j_r}^c, r=1,2, \cdots,l$. Then
$$\begin{aligned}
&\mathbb{P}\left[\left(A_{i_1}^*\bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_k}^*\right)\bigg|\left(A_{j_1}^*\bigcap A_{j_2}^*\bigcap\cdots\bigcap A_{j_l}^*\right)\right]\\
=&\mathbb{P}\left(A_{i_1}^*\bigcap A_{i_2}^*\bigcap\cdots\bigcap A_{i_k}^*\right)\end{aligned}$$
for all $1\ls k\ls n-l. i_1,i_2, \cdots,i_k\in\{1,2, \cdots,n\}\backslash\{j_1,j_2, \cdots,j_l \}$ distinct, and $A_{i_r}^*=A_{i_r }$ or $A_{i_r}^c, r=1,2, \cdots,k$.
\end{corollary}
\begin{proof}
abc
\end{proof}
% chapter 4
\chapter{Distribution Functions and Discrete Random Variables}
\section{Random Variables}
\begin{definition}[Measurable Space]
A measurable space is an ordered pair $(\Omega,\ma)$ consisting of a sample space $\Omega$ and a $\sigma$-algebra $\ma$ of subsets of $\Omega$.
\end{definition}
\begin{definition}[Measurable Function]
Let $(\Omega_1,\ma_1)$, $(\Omega_2,\ma_2)$ be measurable spaces. A function from $\Omega_1$ to $\Omega_2$ is called a measurable function from $(\Omega_1,\ma_1)$ to $(\Omega_2,\ma_2)$ if $f^{-1}(B)\in \ma_1,\forall B\in\ma_2$, where $f^{-1} (B)=\{x\in\Omega:f(x)\in B\}$ is the
pre-image of $B$ under $f$.
\end{definition}
\begin{lemma}[$\sigma$-algebra under Function]
Suppose $f$ is a function from $\Omega_1$ to $\Omega_2$.\\
(1) If $\ma_2$ is a $\sigma$-algebra of subsets of $\Omega_2$, then $\ma_1=\{f^{-1} (B):B\in\ma _2\}$ is a $\sigma$-algebra of subsets of $\Omega_1$.\\
(2) If $\ma_1$ is a $\sigma$-algebra of subsets of $\Omega_1$, then $\ma_2=\{B\in\Omega_2:f^{-1} (B)\in\ma_1\}$ is a $\sigma$-algebra of subsets of $\Omega_2$.
\end{lemma}
\begin{proof}
abc
\end{proof}
\begin{theorem}[$\sigma$-algebra Including Subset]
Suppose $(\Omega_1,\ma_1)$ is a measurable space and $f$ is a function from $\Omega_1$ to $\Omega_2$. If $\mc\subseteq\{B\subseteq\Omega_2: f^{-1} (B)\in\ma_1\}$, then $\sigma(\mc)\subseteq\{B\subseteq\Omega_2: f^{-1} (B)\in\ma_1\}$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[A Kind of Measurable Function]
Suppose $(\Omega_1,\ma_1)$, $(\Omega_2,\ma_2)$ are measurable spaces, and $f$ is a function from $\Omega_1$ to $\Omega_2$. Suppose $\mc\subseteq\{B\subseteq\Omega_2: f^{-1} (B)\in\ma_1\}$ and $\sigma(\mc)\supseteq\ma_2$. Then $f$ is a measurable function from $(\Omega_1,\ma_1)$ to $(\Omega_2,\ma_2)$.
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Composite Measurable Function]
Suppose $(\Omega_1,\ma_1)$, $(\Omega_2,\ma_2)$, $(\Omega_3,\ma_3)$ are measurable spaces, $f$ is a measurable function from $(\Omega_1,\ma_1)$ to $(\Omega_2,\ma_2)$, and $g$ is a measurable function from $(\Omega_2,\ma_2)$ to $(\Omega_3,\ma_3)$. Then $g\circ f$ is a measurable function from $(\Omega_1,\ma_1)$ to $(\Omega_3,\ma_3)$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Open Set]
A set $A$ in $\mr^n$ is called an open set in $\mr^n$ if for all $\mx\in A, \exists r>0 \to\mb_{\mx}(r)\subseteq A$, where $\mb_{\mx}(r)=\left\{\my\in\mr^n:\Arrowvert\my-\mx\Arrowvert<r\right\}$.
\end{definition}
\begin{definition}[Borel $\sigma$-algebra]
The $\sigma$-algebra generated by the set of all open sets in $\mr^n$ is called the Borel $\sigma$-algebra of subsets of $\mr^n$ and is denoted by $\mb_{\mr^n}$. We call a set in $\mb_{\mr^n}$ a Borel set in $\mr^n$.
\end{definition}
\begin{theorem}[Measurable Function from Continuity]
Suppose $f$ is a continuous function from $\mr^n$ to $\mr^m$. Then $f$ is a measurable function from $(\mr^n,\mb_{\mr^n})$ to $(\mr^m,\mb_{\mr^m})$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Cell]
A cell in $\mr$ is a finite interval of the form $(a,b),[a,b),(a,b]$, or $[a,b]$ for some $a\ls b$. A cell $I$ in $\mr^n$, where $n\gs1$, is a Cartesian product of $n$ cells $I_1,I_2, \cdots,I_n$ in $\mr$, i.e., $I=I_1\times I_2\times\cdots\times I_n$.
\end{definition}
\begin{definition}[Open Cube]
Let $\mx\in\mr^n$, $l>0$, and $I_i=\left(x_i-\frac{l}{2},x_i+\frac{l}{2}\right)$,$\forall1\ls i\ls n$. The open cube $C_{\mx}(l)$ in $\mr^n$ with center $\mx$ and side length $l$ is defined as the open cell $I_1\times I_2\times\cdots\times I_n$ in $\mr^n$.
\end{definition}
\begin{theorem}[Set from Cells]
Every open set in $\mr^n$ is a countable union of open cells in $\mr^n$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Measurable Function on Open Cells]
Suppose $(\Omega,\ma)$ is a measurable space and $f$ is a function from $\Omega$ to $\mr^n$. Suppose that $f^{-1}(B)\in\ma$ for all open cells in $\mr^n$. Then $f$ is a measurable function from $(\Omega,\ma)$ to $(\mr^n,\mb_{\mr^n})$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Components of Measurable Function]
Suppose $(\Omega,\ma)$ is a measurable space, $f=(f_1,f_2, \cdots,f_n )$ is a function from $\Omega$ to $\mr^n$. Then $f$ is a measurable function from $(\Omega,\ma)$ to $(\mr^n,\mb_{\mr^n})\Leftrightarrow f_1,f_2, \cdots,f_n$ are measurable functions from $(\Omega,\ma)$ to $(\mr^n,\mb_{\mr^n})$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Elementary Operation of Measurable Function]
Suppose $f$ and $g$ are measurable functions from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$, and $c\in\mr$. Then $cf, f^n, |f|, f+g, f\circ g$ are measurable functions from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Limit of Measurable Functions]
Suppose that $f_1,f_2,\cdots$ are measurable functions from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$ and $f_n\to f$ as $n\to\infty$, where $f$ is a function from $\Omega$ to $\mr$. Then $f$ is also a measurable function from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Equivalence of Nine Types of Set]
Suppose $(\Omega,\ma)$ is a measurable space and $f$ is a function from $\Omega$ to $\mr$. Let $\mc_1$ be the set of all open sets in $\mr$,
$$
\begin{array}{ll}
\mc_2=\{(a,b),a,b\in\mr,a\ls b\}, &\mc_3=\{(a,b],a,b\in\mr,a\ls b\},\\
\mc_4=\{[a,b],a,b\in\mr,a\ls b\}, &\mc_5=\{[a,b),a,b\in\mr,a\ls b\},\\
\mc_6=\{[a,+\infty),a\in\mr\}, &\mc_7=\{(a,+\infty),a\in\mr\},\\
\mc_8=\{(-\infty,a],a\in\mr\}, &\mc_9=\{(-\infty,a),a\in\mr\}.\\
\end{array}
$$
Then $f$ is a measurable function from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$
if $f^{-1} (B)\in\ma, \forall B\subseteq\mc_i$ for any $i=1,2, \cdots,9$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Induced Probability Space under Function]
Suppose $f$ is a measurable function from $(\Omega_1,\ma_1)$ to $(\Omega_2,\ma_2)$. Suppose $P$ is a probability measure on $\ma_1$.
Then the function $P_f$ on $\ma_2$ given by $$P_f (B)=P[f^{-1} (B)], \forall B\in\ma_2$$ is a probability measure.\\
We call $(\Omega_2,\ma_2,P_f)$ the probability space induced from $(\Omega_1,\ma_1,P)$ under $f$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{remark}[Conventional Denotation]
(1) The set $f^{-1} (B)$ is conventionally denoted as $f\in B$. Therefore $P_f (B)=P[f^{-1} (B)]=\mathbb{P}(f\in B), \forall B\in\ma_2$.\\
(2) If $B\in\ma_2$, then $f^{-1} (B)=f^{-1}[B\cap f(\Omega_1)]$, and hence
$P_f (B)=\mathbb{P}(f\in B)=P[f^{-1} (B)]=P[f^{-1} (B\cap f(\Omega_1)]=P[ f\in (B\cap f(\Omega_1))]=P_f (B\cap f(\Omega_1)).$
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{definition}[Random Variable]
Let $(\Omega,\ma,\mathbb{P})$ be a probability space. A measurable function $X$ from $(\Omega,\ma)$ to $(\mr,\mb_{\mr})$ is called a random variable (r.v.) of the probability space $(\Omega,\ma,\mathbb{P})$.\\
A measurable function $\mX=(X_1,X_2, \cdots,X_n)$ from $(\Omega,\ma)$ to $(\mr^n,\mb_{\mr^n})$ is called a random vector (r.vect.) of the probability space $(\Omega,\ma,\mathbb{P})$.
\end{definition}
\begin{remark}[Conventional Denotation of Random Variable]
If $X$ is a r.v. of the probability space $(\Omega,\ma,\mathbb{P})$, then $P_X (B)=P[X^{-1} (B)]=\mathbb{P}(X\in B)=P[\{w\in\Omega:X(w)\in B\}], \forall B\in\mb_{\mr}$.
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Additivity of Countable Points]
Suppose $\mX$ is a r.vect. of a probability space $(\Omega,\ma,\mathbb{P})$, and $B$ is a ``countable'' subset of $\mr^n$, then $B\in\mb_{\mr}$, and
$$P_{\mX} (B)=\mathbb{P}(\mX\in B)=\sum_{\mx\in B}\mathbb{P}(\mX=\mx)=\sum_{\mx\in B}P_{\mX}(\{\mx\}).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\section{Distribution Functions}
\begin{definition}[Cumulative Distribution Function]
Let $X$ be a r.v. of a probability space $(\Omega,\ma,\mathbb{P})$. The cumulative distribution function (c.d.f) $F_X$ of the r.v. $X$ is a function from $\mr$ to $[0,1]$, given by
$$F_X (t)=P_X ((-\infty,t])=\mathbb{P}(X\in(-\infty,t])=\mathbb{P}(X\ls t), \forall t\in\mr.$$
\end{definition}
\begin{theorem}[Properties of C.D.F]
Suppose $X$ is a r.v. of a probability space $(\Omega,\ma,\mathbb{P})$.\\
(1) $F_X$ is increasing.\\
(2) $F_X (+\infty):= \limtpi F_X (t)=1$.\\
(3) $F_X (-\infty):= \limtni F_X (t)=0$.\\
(4) $F_X (t+)=\mathbb{P}(X\ls t)=F_X (t)$. $F_X (t)$ is right continuous.\\
(5) $F_X (t-)=\mathbb{P}(X<t)$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[More Properties of C.D.F]
Suppose $X$ is a r.v. of a probability space $(\Omega,\ma,\mathbb{P})$.\\
(1) $\mathbb{P}(X\ls a)=F_X (a), \mathbb{P}(X>a)=1-F_X (a)$.\\
(2) $\mathbb{P}(X<a)=F_X (a-), \mathbb{P}(X\gs a)=1-F_X (a-)$.\\
(3) $\mathbb{P}(X=a)=F_X (a)-F_X (a-)$.\\
(4) $\mathbb{P}(a<X\ls b)=F_X (b)-F_X (a),\quad \mathbb{P}(a\ls X\ls b)=F_X (b)-F_X (a-),$\\
\quad$\mathbb{P}(a<X<b)=F_X (b-)-F_X (a),\quad \mathbb{P}(a\ls X<b)=F_X (b-)-F_X (a-).$
\end{corollary}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Existence of C.D.F]
Suppose $F: \mr\to[0,1]$ is a function s.t. $F$ is increasing and right continuous,
$$\limtpi F_X (t)=1,\qquad\limtni F_X (t)=0.$$
Then there exists a r.v. $X$ of some probability space $(\Omega,\ma,\mathbb{P})$,
s.t. the c.d.f. $F_X$ of $X$ is equal to $F$. We call such function a c.d.f.
\end{theorem}
\begin{proof}
abc
\end{proof}
\section{Discrete Random Variables}
\begin{definition}[Discrete R.V.]
A r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ is called a discrete r.v. if $X(\Omega)=\{X(w):w\in\Omega\}$ is countable.
\end{definition}
\begin{definition}[Probability Mass Function]
Let $X$ be a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ s.t. $X(\Omega)=\{x_1,x_2,\cdots\}$. The probability mass function (p.m.f) $p_X: \mr\to[0,1]$ of $X$ is a function from $\mr$ to $[0,1]$ given by $p_X (x)=P_X (\{X=x\})=\mathbb{P}(X=x), \forall x\in\mr$.
\end{definition}
\begin{theorem}[Properties of P.M.F]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$. Then,\\
(1) $p_X (x)\gs0, \forall x\in X(\Omega)$.\\
(2) $p_X (x)=0, \forall x\in\mr\setminus X(\Omega)$.\\
(3) $\dis\sum_{x\in X(\Omega)}p_X (x) =1$.\\
Therefore if $X(\Omega)=\{x_1,x_2,\cdots\}$, then,\\
(1) $p_X (x_i )\gs0, \forall i=1,2,\dots$.\\
(2) $p_X (x)=0,\forall x\in\mr\setminus\{x_1,x_2,\cdots\}$.\\
(3) $\dis\sum_{i=1}^\infty p_X (x_i ) =1$.\\
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Existence of P.M.F]
Suppose $p: \mr\to[0,1]$ is a function s.t.\\
(1) $p(x_i )\gs0 \forall i=1,2,\dots$\\
(2) $p(x)=0, \forall x\in\mr\setminus\{x_1,x_2,\cdots\}$.\\
(3) $\dis\sum_{i=1}^\infty p_X (x_i ) =1$.\\
for some distinct $x_1,x_2,\cdots\in\mr$.\\
Then there exists a discrete r.v. $X$ of some probability space $(\Omega,\ma,\mathbb{P})$ s.t. the p.m.f. $p_X$ of $X$ is equal to $p$. We call such a function a p.m.f.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Step Distribution Function for Discrete R.V.]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ s.t. $X(\Omega)=\{x_1,x_2\cdots\}$, where $x_1<x_2<\cdots$. Then the distribution function of $X$ is a step function given by
$$
F_X (t)=
\begin{cases}
\qquad0,\qquad \text{if} t<x_1\\
\sumin p_X (x_i ), \text{if} x_n\ls t\ls x_{n+1}, n=1,2,\dots
\end{cases}
=\sumin p_X (x_i )U(t-x_i),
$$
where
$$
U(t)=\begin{cases}
1, \text{if} t\gs0\\
0, \text{o.w.}
\end{cases}
$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\section{Expectations of Discrete Random Variables}
\begin{definition}[Expectation]
Let $X$ be a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$. The expectation (or expected value, or mean) of $X$ is given by
$$
\mathbb{E}[X]=\sum_{x\in X(\Omega)}x\cdot \mathbb{P}(X=x) =\sum_{x\in X(\Omega)}x\cdot p_X (x)
$$
if the sum converges absolutely. And if the sum diverges to $\pm\infty$, $\mathbb{E}[X]=\pm\infty$.
\end{definition}
\begin{remark}[Explanations of Expectation]
(1) The expectation $\dis \mathbb{E}[X]=\sum_{x\in X(\Omega)}x\cdot p_X (x)$ is the weighted average of $\{x:x\in X(\Omega)\}$ with weights $\{\mathbb{P}(X=x): x\in X(\Omega)\}$.\\
(2) The expectation $\dis \mathbb{E}[X]=\sum_{x\in X(\Omega)}x\cdot p_X (x)$ is the center of gravity of $\{\mathbb{P}(X=x): x\in X(\Omega)\}$.
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Expectation of Constant]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ s.t. $X$ is a constant with probability 1, i.e., $\mathbb{P}(X=c)=1$ for some $c\in\mr$. Then $c\in X(\Omega), \mathbb{P}(X=x)=0, \forall x\in X(\Omega)\setminus\{c\}$, and $\mathbb{E}[X]=c$. In particular, if $X$ is a constant r.v. of $(\Omega,\ma,\mathbb{P})$, i.e., $X(w)=c, \forall w\in\Omega$, for some $c\in\mr$, then $\mathbb{E}[X]=c$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Composition of Function and R.V.]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and $g$ be a measurable function from $(\mr,\mb_{\mr})$ to $(\mr,\mb_{\mr})$. Then $g(X):= g\circ X$ is a discrete r.v. of $(\Omega,\ma,\mathbb{P})$ and
$$\mathbb{E}[g(X)]=\sum_{x\in X(\Omega)}g(x)\mathbb{P}(X=x).$$
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{corollary}[Linearity of Expectation]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$,
$g_1,g_2, \cdots,g_n$ are measurable functions from $(\mr,\mb_{\mr})$ to $(\mr,\mb_{\mr})$, and $\alpha_1,\alpha_2, \cdots,\alpha_n\in\mr$, Then
$$
\sumin\alpha_i g_i (X)
$$
is a discrete r.v. of $(\Omega,\ma,\mathbb{P})$ and
$$
\mathbb{E}\left[\sumin\alpha_i g_i (X)\right]=\sumin\alpha_i \mathbb{E}[g_i (X)].
$$
\end{corollary}
\begin{proof}
abc
\end{proof}
\section{Variances and Moments of Discrete Random Variables}
\begin{definition}[Variance and Standard Deviation]
Let $X$ be a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and suppose $\mathbb{E}[X]$ exists. The variance of $X$ is given by $$\mathrm{Var}(X)=\mathbb{E}[(X-\mathbb{E}[X])^2],$$ and the standard deviation of $X$ is given by $\sigma_X=\sqrt{\mathrm{Var}(X)}$.
\end{definition}
\begin{remark}[Explanation about Variance]
The variance of a discrete r.v. measures the dispersion (or spread) of its probability masses about its expectation (center of gravity of its probability masses).
\end{remark}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Calculating Variance]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and suppose $\mathbb{E}[X]$ exists. Then $\mathrm{Var}(X)=\mathbb{E}[X^2]-(\mathbb{E}[X])^2$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Minimum Distance with Expectation]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and suppose $\mathbb{E}[X]$ exists. If $\mathbb{E}[X^2]<+\infty$, then $\mathrm{Var}(X)=\min_{a\in\mr}\mathbb{E}[(X-a)^2]$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[With Probability 1]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$.\\
(1) $\mathbb{E}[X^2]\gs0$, ``='' holds $\Leftrightarrow X=0$ with probability 1, i.e., $\mathbb{P}(X=0)=1$.\\
(2) If $\mathbb{E}[X]$ exists, then $\mathrm{Var}(X)\gs0$, ``='' holds $\Leftrightarrow X=\mathbb{E}[X]$ with probability 1, i.e., $\mathbb{P}(X=\mathbb{E}[X])=1$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{theorem}[Calculating Linear Combination]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and suppose $\mathbb{E}[X]$ exists. Then $\mathrm{Var}(aX+b)=a^2 \mathrm{Var}(X)$ and $\sigma_{aX+b}=|a| \sigma_X, \forall a,b\in\mr$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\begin{definition}[Moment and Absolute Moment]
Let $X$ be a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$, and $r,c\in\mr$.
$$\left\{
\begin{array}{l}
\text{The }r^{th} \text{moment of } X \text{is given by } \mathbb{E}[X^r] \
\text{The }r^{th} \text{central moment of } X \text{is given by } \mathbb{E}[(X-\mathbb{E}[X])^r]\\
\text{The }r^{th} \text{moment of } c \text{is given by } \mathbb{E}[(X-c)^r] \
\text{The }r^{th} \text{absolute moment of } X \text{is given by } \mathbb{E}[|X|^r]\\
\text{The }r^{th} \text{absolute central moment of } X \text{is given by } \mathbb{E}[|X-\mathbb{E}[X] |^r] \\
\text{The } r^{th} \text{absolute moment of } c \text{is given by } \mathbb{E}[|X-c|^r]
\end{array}
\right.$$
If the respective sum converges absolutely.
\end{definition}
\begin{theorem}[Existence of Lower Order Moment]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and suppose $0<r<s$. If $\mathbb{E}[|X|^s]$ exists, then $\mathbb{E}[|X|^r]$ exists. That is, the existence of a higher order moment of $X$ guarantees the existence of a lower order moment of $X$.
\end{theorem}
\begin{proof}
abc
\end{proof}
\section{Standardized Random Variables}
\begin{definition}[Standardized R.V.]
Let $X$ be a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$. If $\mathrm{Var}(X)$ exists and $\mathrm{Var}(X)\neq0$, then the standardized r.v. of $X$ is given by
$$X^*=\frac{X-\mathbb{E}[X]}{\sigma_X}$$
i.e., $X^*$ is the number of standard deviation units by which $X$ differs from $\mathbb{E}[X]$.
\end{definition}
\begin{theorem}[Expectation and Variance of Standardized R.V.]
Suppose $X$ is a discrete r.v. of a probability space $(\Omega,\ma,\mathbb{P})$ and $\mathrm{Var}(X)$ exists, $\mathrm{Var}(X)\neq0$. Then $\mathbb{E}[X^*]=0$ and $\mathrm{Var}(X^* )=1$.
\end{theorem}
\begin{proof}
abc
\end{proof}