Skip to content

Latest commit

 

History

History
309 lines (249 loc) · 34.6 KB

File metadata and controls

309 lines (249 loc) · 34.6 KB

import ChangeLog from '../changelog/connector-jdbc.md';

JDBC

JDBC source connector

Description

Read external data source data through JDBC.

:::tip

Warn: for license compliance, you have to provide database driver yourself, copy to $SEATUNNEL_HOME/lib/ directory in order to make them work.

e.g. If you use MySQL, should download and copy mysql-connector-java-xxx.jar to $SEATUNNEL_HOME/lib/. For Spark/Flink, you should also copy it to $SPARK_HOME/jars/ or $FLINK_HOME/lib/.

:::

Using Dependency

For Spark/Flink Engine

  1. You need to ensure that the jdbc driver jar package has been placed in directory ${SEATUNNEL_HOME}/plugins/.

For SeaTunnel Zeta Engine

  1. You need to ensure that the jdbc driver jar package has been placed in directory ${SEATUNNEL_HOME}/lib/.

Key features

supports query SQL and can achieve projection effect.

Options

name type required default value description
url String Yes - The URL of the JDBC connection. Refer to a case: jdbc:postgresql://localhost/test
driver String Yes - The jdbc class name used to connect to the remote data source, if you use MySQL the value is com.mysql.cj.jdbc.Driver.
user String No - userName
password String No - password
query String No - Query statement
compatible_mode String No - The compatible mode of database, required when the database supports multiple compatible modes.
For example, when using OceanBase database, you need to set it to 'mysql' or 'oracle'.
when using starrocks, you need set it to starrocks
connection_check_timeout_sec Int No 30 The time in seconds to wait for the database operation used to validate the connection to complete.
partition_column String No - The column name for split data.
partition_upper_bound Long No - The partition_column max value for scan, if not set SeaTunnel will query database get max value.
partition_lower_bound Long No - The partition_column min value for scan, if not set SeaTunnel will query database get min value.
partition_num Int No job parallelism Not recommended for use, The correct approach is to control the number of split through split.size
Note: This parameter takes effect only when using the query parameter. It does not take effect when using the table_path parameter.
decimal_type_narrowing Boolean No true Decimal type narrowing, if true, the decimal type will be narrowed to the int or long type if without loss of precision. Only support for Oracle at now. Please refer to decimal_type_narrowing below
use_select_count Boolean No false Use select count for table count rather then other methods in dynamic chunk split stage. This is currently only available for jdbc-oracle.In this scenario, select count directly is used when it is faster to update statistics using sql from analysis table
skip_analyze Boolean No false Skip the analysis of table count in dynamic chunk split stage. This is currently only available for jdbc-oracle.In this scenario, you schedule analysis table sql to update related table statistics periodically or your table data does not change frequently
fetch_size Int No 0 For queries that return a large number of objects, you can configure the row fetch size used in the query to improve performance by reducing the number database hits required to satisfy the selection criteria. Zero means use jdbc default value.
properties Map No - Additional connection configuration parameters,when properties and URL have the same parameters, the priority is determined by the
specific implementation of the driver. For example, in MySQL, properties take precedence over the URL.
table_path String No - The path to the full path of table, you can use this configuration instead of query.
examples:
- mysql: "testdb.table1"
- oracle: "test_schema.table1"
- sqlserver: "testdb.test_schema.table1"
- postgresql: "testdb.test_schema.table1"
- iris: "test_schema.table1"
table_list Array No - The list of tables to be read, you can use this configuration instead of table_path
where_condition String No - Common row filter conditions for all tables/queries, must start with where. for example where id > 100
split.size Int No 8096 How many rows in one split, captured tables are split into multiple splits when read of table. Note: This parameter takes effect only when using the table_path parameter. It does not take effect when using the query parameter.
split.even-distribution.factor.lower-bound Double No 0.05 Not recommended for use.
The lower bound of the chunk key distribution factor. This factor is used to determine whether the table data is evenly distributed. If the distribution factor is calculated to be greater than or equal to this lower bound (i.e., (MAX(id) - MIN(id) + 1) / row count), the table chunks would be optimized for even distribution. Otherwise, if the distribution factor is less, the table will be considered as unevenly distributed and the sampling-based sharding strategy will be used if the estimated shard count exceeds the value specified by sample-sharding.threshold. The default value is 0.05.
split.even-distribution.factor.upper-bound Double No 100 Not recommended for use.
The upper bound of the chunk key distribution factor. This factor is used to determine whether the table data is evenly distributed. If the distribution factor is calculated to be less than or equal to this upper bound (i.e., (MAX(id) - MIN(id) + 1) / row count), the table chunks would be optimized for even distribution. Otherwise, if the distribution factor is greater, the table will be considered as unevenly distributed and the sampling-based sharding strategy will be used if the estimated shard count exceeds the value specified by sample-sharding.threshold. The default value is 100.0.
split.sample-sharding.threshold Int No 1000 This configuration specifies the threshold of estimated shard count to trigger the sample sharding strategy. When the distribution factor is outside the bounds specified by chunk-key.even-distribution.factor.upper-bound and chunk-key.even-distribution.factor.lower-bound, and the estimated shard count (calculated as approximate row count / chunk size) exceeds this threshold, the sample sharding strategy will be used. This can help to handle large datasets more efficiently. The default value is 1000 shards.
split.inverse-sampling.rate Int No 1000 The inverse of the sampling rate used in the sample sharding strategy. For example, if this value is set to 1000, it means a 1/1000 sampling rate is applied during the sampling process. This option provides flexibility in controlling the granularity of the sampling, thus affecting the final number of shards. It's especially useful when dealing with very large datasets where a lower sampling rate is preferred. The default value is 1000.
common-options No - Source plugin common parameters, please refer to Source Common Options for details.
split.string_split_mode String No sample Supports different string splitting algorithms. By default, sample is used to determine the split by sampling the string value. You can switch to charset_based to enable charset-based string splitting algorithm. When set to charset_based, the algorithm assumes characters of partition_column are within ASCII range 32-126, which covers most character-based splitting scenarios.
split.string_split_mode_collate String No - Specifies the collation to use when string_split_mode is set to charset_based and the table has a special collation. If not specified, the database's default collation will be used.

decimal_type_narrowing

Decimal type narrowing, if true, the decimal type will be narrowed to the int or long type if without loss of precision. Only support for Oracle at now.

eg:

decimal_type_narrowing = true

Oracle SeaTunnel
NUMBER(1, 0) Boolean
NUMBER(6, 0) INT
NUMBER(10, 0) BIGINT

decimal_type_narrowing = false

Oracle SeaTunnel
NUMBER(1, 0) Decimal(1, 0)
NUMBER(6, 0) Decimal(6, 0)
NUMBER(10, 0) Decimal(10, 0)

Parallel Reader

The JDBC Source connector supports parallel reading of data from tables. SeaTunnel will use certain rules to split the data in the table, which will be handed over to readers for reading. The number of readers is determined by the parallelism option.

Split Key Rules:

  1. If partition_column is not null, It will be used to calculate split. The column must in Supported split data type.
  2. If partition_column is null, seatunnel will read the schema from table and get the Primary Key and Unique Index. If there are more than one column in Primary Key and Unique Index, The first column which in the supported split data type will be used to split data. For example, the table have Primary Key(nn guid, name varchar), because guid id not in supported split data type, so the column name will be used to split data.

Supported split data type:

  • String
  • Number(int, bigint, decimal, ...)
  • Date

tips

If the table can not be split(for example, table have no Primary Key or Unique Index, and partition_column is not set), it will run in single concurrency.

Use table_path to replace query for single table reading. If you need to read multiple tables, use table_list.

appendix

there are some reference value for params above.

datasource driver url maven
mysql com.mysql.cj.jdbc.Driver jdbc:mysql://localhost:3306/test https://mvnrepository.com/artifact/mysql/mysql-connector-java
postgresql org.postgresql.Driver jdbc:postgresql://localhost:5432/postgres https://mvnrepository.com/artifact/org.postgresql/postgresql
dm dm.jdbc.driver.DmDriver jdbc:dm://localhost:5236 https://mvnrepository.com/artifact/com.dameng/DmJdbcDriver18
phoenix org.apache.phoenix.queryserver.client.Driver jdbc:phoenix:thin:url=http://localhost:8765;serialization=PROTOBUF https://mvnrepository.com/artifact/com.aliyun.phoenix/ali-phoenix-shaded-thin-client
sqlserver com.microsoft.sqlserver.jdbc.SQLServerDriver jdbc:sqlserver://localhost:1433 https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc
oracle oracle.jdbc.OracleDriver jdbc:oracle:thin:@localhost:1521/xepdb1 https://mvnrepository.com/artifact/com.oracle.database.jdbc/ojdbc8
sqlite org.sqlite.JDBC jdbc:sqlite:test.db https://mvnrepository.com/artifact/org.xerial/sqlite-jdbc
gbase8a com.gbase.jdbc.Driver jdbc:gbase://e2e_gbase8aDb:5258/test https://cdn.gbase.cn/products/30/p5CiVwXBKQYIUGN8ecHvk/gbase-connector-java-9.5.0.7-build1-bin.jar
starrocks com.mysql.cj.jdbc.Driver jdbc:mysql://localhost:3306/test https://mvnrepository.com/artifact/mysql/mysql-connector-java
db2 com.ibm.db2.jcc.DB2Driver jdbc:db2://localhost:50000/testdb https://mvnrepository.com/artifact/com.ibm.db2.jcc/db2jcc/db2jcc4
tablestore com.alicloud.openservices.tablestore.jdbc.OTSDriver "jdbc:ots:http s://myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance" https://mvnrepository.com/artifact/com.aliyun.openservices/tablestore-jdbc
saphana com.sap.db.jdbc.Driver jdbc:sap://localhost:39015 https://mvnrepository.com/artifact/com.sap.cloud.db.jdbc/ngdbc
doris com.mysql.cj.jdbc.Driver jdbc:mysql://localhost:3306/test https://mvnrepository.com/artifact/mysql/mysql-connector-java
teradata com.teradata.jdbc.TeraDriver jdbc:teradata://localhost/DBS_PORT=1025,DATABASE=test https://mvnrepository.com/artifact/com.teradata.jdbc/terajdbc
Snowflake net.snowflake.client.jdbc.SnowflakeDriver jdbc:snowflake://<account_name>.snowflakecomputing.com https://mvnrepository.com/artifact/net.snowflake/snowflake-jdbc
Redshift com.amazon.redshift.jdbc42.Driver jdbc:redshift://localhost:5439/testdb?defaultRowFetchSize=1000 https://mvnrepository.com/artifact/com.amazon.redshift/redshift-jdbc42
Vertica com.vertica.jdbc.Driver jdbc:vertica://localhost:5433 https://repo1.maven.org/maven2/com/vertica/jdbc/vertica-jdbc/12.0.3-0/vertica-jdbc-12.0.3-0.jar
Kingbase com.kingbase8.Driver jdbc:kingbase8://localhost:54321/db_test https://repo1.maven.org/maven2/cn/com/kingbase/kingbase8/8.6.0/kingbase8-8.6.0.jar
OceanBase com.oceanbase.jdbc.Driver jdbc:oceanbase://localhost:2881 https://repo1.maven.org/maven2/com/oceanbase/oceanbase-client/2.4.12/oceanbase-client-2.4.12.jar
Hive org.apache.hive.jdbc.HiveDriver jdbc:hive2://localhost:10000 https://repo1.maven.org/maven2/org/apache/hive/hive-jdbc/3.1.3/hive-jdbc-3.1.3-standalone.jar
xugu com.xugu.cloudjdbc.Driver jdbc:xugu://localhost:5138 https://repo1.maven.org/maven2/com/xugudb/xugu-jdbc/12.2.0/xugu-jdbc-12.2.0.jar
InterSystems IRIS com.intersystems.jdbc.IRISDriver jdbc:IRIS://localhost:1972/%SYS https://raw.githubusercontent.com/intersystems-community/iris-driver-distribution/main/JDBC/JDK18/intersystems-jdbc-3.8.4.jar
opengauss org.opengauss.Driver jdbc:opengauss://localhost:5432/postgres https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/5.1.0-og/opengauss-jdbc-5.1.0-og.jar
Highgo com.highgo.jdbc.Driver jdbc:highgo://localhost:5866/highgo https://repo1.maven.org/maven2/com/highgo/HgdbJdbc/6.2.3/HgdbJdbc-6.2.3.jar

Example

simple

Case 1

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    query = "select * from type_bin"
}

Case 2 Use the select count(*) instead of analysis table for count table rows in dynamic chunk split stage

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    use_select_count = true 
    query = "select * from type_bin"
}

Case 3 Use the select NUM_ROWS from all_tables for the table rows but skip the analyze table.

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    skip_analyze = true 
    query = "select * from type_bin"
}

parallel by partition_column

env {
  parallelism = 10
  job.mode = "BATCH"
}
source {
    Jdbc {
        url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        query = "select * from type_bin"
        partition_column = "id"
        partition_num = 10 # Replace split.size with partition_num
        # Read start boundary
        #partition_lower_bound = ...
        # Read end boundary
        #partition_upper_bound = ...
    }
}

sink {
  Console {}
}

Parallel Boundary:

It is more efficient to specify the data within the upper and lower bounds of the query. It is more efficient to read your data source according to the upper and lower boundaries you configured.

source {
    Jdbc {
        url = "jdbc:mysql://localhost:3306/test?serverTimezone=GMT%2b8&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        # Define query logic as required
        query = "select * from type_bin"
        partition_column = "id"
        # Read start boundary
        partition_lower_bound = 1
        # Read end boundary
        partition_upper_bound = 500
        partition_num = 10
        properties {
         useSSL=false
        }
    }
}

parallel by Primary Key or Unique Index

Configuring table_path will turn on auto split, you can configure split.* to adjust the split strategy

env {
  parallelism = 10
  job.mode = "BATCH"
}
source {
    Jdbc {
        url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        table_path = "testdb.table1"
        query = "select * from testdb.table1"
        split.size = 10000
    }
}

sink {
  Console {}
}

multiple table read:

Configuring table_list will turn on auto split, you can configure split.* to adjust the split strategy

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"

    table_list = [
        {
          # e.g. table_path = "testdb.table1"、table_path = "test_schema.table1"、table_path = "testdb.test_schema.table1"
          table_path = "testdb.table1"
        },
        {
          table_path = "testdb.table2"
          # Use query filetr rows & columns
          query = "select id, name from testdb.table2 where id > 100"
        }
    ]
    #where_condition= "where id > 100"
    #split.size = 10000
    #split.even-distribution.factor.upper-bound = 100
    #split.even-distribution.factor.lower-bound = 0.05
    #split.sample-sharding.threshold = 1000
    #split.inverse-sampling.rate = 1000
}

Changelog