Skip to content

Commit f79a9e7

Browse files
author
Victor Miraldo
committed
WIP: Work out the first proof
1 parent fc2c7f8 commit f79a9e7

File tree

1 file changed

+38
-0
lines changed

1 file changed

+38
-0
lines changed
Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
-- Copied with minor changes from agda-categories:
2+
-- https://agda.github.io/agda-categories/Categories.Morphism.Reasoning.Iso.html
3+
-- which is licensed under the MIT license.
4+
-- Copyright (c) 2019 Agda Github Community
5+
6+
{-# OPTIONS --safe #-}
7+
8+
open import Cheshire.Core
9+
open import Cheshire.Signatures
10+
open import Cheshire.Structures.Core
11+
import Cheshire.Morphism.Bundles as Bundles
12+
import Cheshire.Morphism.Reasoning.Core as MorReasoning
13+
14+
module Cheshire.Morphism.Reasoning.Iso
15+
{o l} {Q : Quiver o l}
16+
{C : Category Q }
17+
{e} ⦃ eq : Equivalence Q e ⦄
18+
(is-C : IsCategory C)
19+
where
20+
21+
open Quiver Q using (_⇒_)
22+
open Category C
23+
open IsCategory is-C
24+
open Definitions C
25+
open Bundles C
26+
open HomReasoning
27+
28+
module Switch {A B : Q .Ob}(a-is-b : A ≅ B) where
29+
open _≅_ a-is-b
30+
open MorReasoning is-C
31+
32+
switch-fromtoˡ
33+
: {X : Q .Ob}{h : X ⇒ A}{k : X ⇒ B}
34+
from ∘ h ≈ k h ≈ to ∘ k
35+
switch-fromtoˡ {h = h} {k = k} hyp = begin
36+
h ≈⟨ sym (cancelˡ isoˡ {f = h}) ⟩
37+
to ∘ (from ∘ h) ≈⟨ ∘-resp-≈ refl hyp ⟩
38+
to ∘ k ∎

0 commit comments

Comments
 (0)