-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotionfocal.py
executable file
·79 lines (66 loc) · 2.96 KB
/
motionfocal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
from numpy import *
from PIL import Image
import os
import os.path
import re
from scipy.ndimage import interpolation
import logging
import multiprocessing as mp
logging.basicConfig(level = logging.INFO)
def _shift_image(image, offset):
return interpolation.shift(image, (0, offset, 0), mode = 'nearest', order = 1)
def compose(pool, images, offset, scale = 1.0):
'''
images: asyncresults of images
TODO might want to linearize the input images before composition
'''
firstimage = images[0].get()
out = zeros(firstimage.shape)
shifted = [pool.apply_async(_shift_image, [image.get(), ((len(images) - 1) * 0.5 - inum) * offset]) for inum, image in enumerate(images)]
for inum, image in enumerate(shifted):
logging.info('processing image %d', inum)
out += image.get()
out /= len(images)
out *= scale
out[out > 255] = 255
out[out < 0] = 0
return Image.fromarray(out.astype(uint8))
def _load_image(image):
arr = asarray(Image.open(image))
logging.info('loaded image %s', image)
return arr
def load_images(pool, images):
'''
load images using processpool
retuns a list of asyncresults
'''
return [pool.apply_async(_load_image, [image]) for image in images]
def file_list(basepath, begin = None, end = None):
directory, filename = os.path.split(basepath)
if 0 == len(directory):
directory = '.'
basere = re.compile(filename + r'(\d+)\.(\w*)$')
files = os.listdir(directory)
matches = [y for y in [basere.match(x) for x in files] if None != y]
inrange = []
for match in matches:
num = int(match.group(1))
if end is None or num < end:
if begin is None or num >= begin:
inrange.append(match)
return sort([os.path.join(directory, x.group(0)) for x in inrange])
if '__main__' == __name__:
pool = mp.Pool()
import argparse
parser = argparse.ArgumentParser(description = 'utility for generating images with short focal depth using multiple images')
parser.add_argument('--input', help = 'the base path of the frames would be asdf if you have frames named like asdf001.png', required = True)
parser.add_argument('--offset', default = 1, help = 'how much to offset each image. should be negative if things are going right to left')
parser.add_argument('--output', required = True, help = 'the output filename')
parser.add_argument('--begin', help = 'the number of the first frame')
parser.add_argument('--end', help = 'the number of the frame after the last')
parser.add_argument('--brightness', default = 1, help = 'scale the output using this value before qunatizing to 8 bit')
args = parser.parse_args()
files = file_list(args.input, int(args.begin) if args.begin else None, int(args.end) if args.end else None)
logging.info('will compose using the files %s', files)
compose(pool, load_images(pool, files), float(args.offset), float(args.brightness)).save(args.output)