|
| 1 | +unit Unit1; |
| 2 | + |
| 3 | +interface |
| 4 | + |
| 5 | +uses |
| 6 | + System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants, |
| 7 | + FMX.Types, FMX.Controls, FMX.Forms, FMX.Graphics, FMX.Dialogs, |
| 8 | + FMX.Controls.Presentation, FMX.StdCtrls, |
| 9 | + // Neural specifc files. |
| 10 | + neuralnetwork, neuralvolume, neuraldatasets, neuralfit, neuralthread; |
| 11 | + |
| 12 | +// In Delphi, in project options: |
| 13 | +// * At compiler, search path (-U), you'll add the "neural" folder: ..\..\neural\ |
| 14 | +// * Still at the compiler, set the final output directory (-E) to: ..\..\bin\x86_64-win64\bin\ |
| 15 | +// * In "generate console application", set it to true. |
| 16 | + |
| 17 | +// In your "uses" section, include: |
| 18 | +// neuralnetwork, neuralvolume, neuraldatasets, neuralfit, neuralthread; |
| 19 | + |
| 20 | +type |
| 21 | + TForm1 = class(TForm) |
| 22 | + Button1: TButton; |
| 23 | + Button2: TButton; |
| 24 | + procedure Button1Click(Sender: TObject); |
| 25 | + procedure Button2Click(Sender: TObject); |
| 26 | + private |
| 27 | + { Private declarations } |
| 28 | + public |
| 29 | + { Public declarations } |
| 30 | + end; |
| 31 | + |
| 32 | +var |
| 33 | + Form1: TForm1; |
| 34 | + |
| 35 | +implementation |
| 36 | + |
| 37 | + |
| 38 | +type |
| 39 | + // Define the input and output types for training data |
| 40 | + TBackInput = array[0..3] of array[0..1] of TNeuralFloat; // Input data for OR operation |
| 41 | + TBackOutput = array[0..3] of array[0..0] of TNeuralFloat; // Expected output for OR operation |
| 42 | + |
| 43 | +const |
| 44 | + cs_false = 0.1; // Encoding for "false" value |
| 45 | + cs_true = 0.8; // Encoding for "true" value |
| 46 | + cs_threshold = (cs_false + cs_true) / 2; // Threshold for neuron activation |
| 47 | + |
| 48 | +const |
| 49 | + cs_inputs : TBackInput = |
| 50 | + ( |
| 51 | + // Input data for OR operation |
| 52 | + (cs_false, cs_false), |
| 53 | + (cs_false, cs_true), |
| 54 | + (cs_true, cs_false), |
| 55 | + (cs_true, cs_true) |
| 56 | + ); |
| 57 | + |
| 58 | +const |
| 59 | + cs_outputs : TBackOutput = |
| 60 | + ( |
| 61 | + // Expected outputs for OR operation |
| 62 | + (cs_false), |
| 63 | + (cs_true), |
| 64 | + (cs_true), |
| 65 | + (cs_true) |
| 66 | + ); |
| 67 | + |
| 68 | + procedure RunSimpleLearning(); |
| 69 | + var |
| 70 | + NN: TNNet; |
| 71 | + EpochCnt: integer; |
| 72 | + Cnt: integer; |
| 73 | + pOutPut: TNNetVolume; |
| 74 | + vInputs: TBackInput; |
| 75 | + vOutput: TBackOutput; |
| 76 | + begin |
| 77 | + NN := TNNet.Create(); |
| 78 | + |
| 79 | + // Create the neural network layers |
| 80 | + NN.AddLayer(TNNetInput.Create(2)); // Input layer with 2 neurons |
| 81 | + NN.AddLayer(TNNetFullConnectLinear.Create(1)); // Single neuron layer connected to both inputs from the previous layer. |
| 82 | + |
| 83 | + NN.SetLearningRate(0.01, 0.9); // Set the learning rate and momentum |
| 84 | + |
| 85 | + vInputs := cs_inputs; // Assign the input data |
| 86 | + vOutput := cs_outputs; // Assign the expected output data |
| 87 | + pOutPut := TNNetVolume.Create(1, 1, 1, 1); // Create a volume to hold the output |
| 88 | + |
| 89 | + WriteLn('Value encoding FALSE is: ', cs_false:4:2); // Display the encoding for "false" |
| 90 | + WriteLn('Value encoding TRUE is: ', cs_true:4:2); // Display the encoding for "true" |
| 91 | + WriteLn('Threshold is: ', cs_threshold:4:2); // Display the threshold value |
| 92 | + WriteLn; |
| 93 | + |
| 94 | + for EpochCnt := 1 to 1200 do |
| 95 | + begin |
| 96 | + for Cnt := Low(cs_inputs) to High(cs_inputs) do |
| 97 | + begin |
| 98 | + // Feed forward and backpropagation |
| 99 | + NN.Compute(vInputs[Cnt]); // Perform feedforward computation |
| 100 | + NN.GetOutput(pOutPut); // Get the output of the network |
| 101 | + NN.Backpropagate(vOutput[Cnt]); // Perform backpropagation to adjust weights |
| 102 | + |
| 103 | + if EpochCnt mod 100 = 0 then |
| 104 | + WriteLn( |
| 105 | + EpochCnt:7, 'x', Cnt, |
| 106 | + ' Output:', pOutPut.Raw[0]:5:2,' ', |
| 107 | + ' - Training/Desired Output:', vOutput[cnt][0]:5:2,' ' |
| 108 | + ); |
| 109 | + end; |
| 110 | + |
| 111 | + if EpochCnt mod 100 = 0 then |
| 112 | + begin |
| 113 | + WriteLn(''); |
| 114 | + end; |
| 115 | + |
| 116 | + end; |
| 117 | + |
| 118 | + NN.DebugWeights(); // Display the final weights of the network |
| 119 | + |
| 120 | + pOutPut.Free; // Free the memory allocated for output |
| 121 | + NN.Free; // Free the memory allocated for the network |
| 122 | + |
| 123 | + end; |
| 124 | + |
| 125 | + procedure RunNeuralNetwork; |
| 126 | + var |
| 127 | + NN: TNNet; |
| 128 | + NeuralFit: TNeuralImageFit; |
| 129 | + ImgTrainingVolumes, ImgValidationVolumes, ImgTestVolumes: TNNetVolumeList; |
| 130 | + begin |
| 131 | + if not CheckCIFARFile() then |
| 132 | + begin |
| 133 | + exit; |
| 134 | + end; |
| 135 | + WriteLn('Creating Neural Network...'); |
| 136 | + NN := TNNet.Create(); |
| 137 | + NN.AddLayer([ |
| 138 | + TNNetInput.Create(32, 32, 3), |
| 139 | + TNNetConvolutionLinear.Create({Features=}64, {FeatureSize=}5, {Padding=}2, {Stride=}1, {SuppressBias=}1), |
| 140 | + TNNetMaxPool.Create(4), |
| 141 | + TNNetMovingStdNormalization.Create(), |
| 142 | + TNNetConvolutionReLU.Create({Features=}64, {FeatureSize=}3, {Padding=}1, {Stride=}1, {SuppressBias=}1), |
| 143 | + TNNetConvolutionReLU.Create({Features=}64, {FeatureSize=}3, {Padding=}1, {Stride=}1, {SuppressBias=}1), |
| 144 | + TNNetConvolutionReLU.Create({Features=}64, {FeatureSize=}3, {Padding=}1, {Stride=}1, {SuppressBias=}1), |
| 145 | + TNNetConvolutionReLU.Create({Features=}64, {FeatureSize=}3, {Padding=}1, {Stride=}1, {SuppressBias=}1), |
| 146 | + TNNetDropout.Create(0.5), |
| 147 | + TNNetMaxPool.Create(2), |
| 148 | + TNNetFullConnectLinear.Create(10), |
| 149 | + TNNetSoftMax.Create() |
| 150 | + ]); |
| 151 | + NN.DebugStructure(); |
| 152 | + CreateCifar10Volumes(ImgTrainingVolumes, ImgValidationVolumes, ImgTestVolumes); |
| 153 | + |
| 154 | + NeuralFit := TNeuralImageFit.Create; |
| 155 | + NeuralFit.FileNameBase := 'SimpleImageClassifier-'+IntToStr(GetProcessId()); |
| 156 | + NeuralFit.InitialLearningRate := 0.001; |
| 157 | + NeuralFit.LearningRateDecay := 0.01; |
| 158 | + NeuralFit.StaircaseEpochs := 10; |
| 159 | + NeuralFit.Inertia := 0.9; |
| 160 | + NeuralFit.L2Decay := 0; |
| 161 | + NeuralFit.Fit(NN, ImgTrainingVolumes, ImgValidationVolumes, ImgTestVolumes, {NumClasses=}10, {batchsize=}64, {epochs=}50); |
| 162 | + NeuralFit.Free; |
| 163 | + |
| 164 | + NN.Free; |
| 165 | + ImgTestVolumes.Free; |
| 166 | + ImgValidationVolumes.Free; |
| 167 | + ImgTrainingVolumes.Free; |
| 168 | + end; |
| 169 | + |
| 170 | + |
| 171 | +{$R *.fmx} |
| 172 | + |
| 173 | +procedure TForm1.Button1Click(Sender: TObject); |
| 174 | +begin |
| 175 | + RunNeuralNetwork; |
| 176 | +end; |
| 177 | + |
| 178 | +procedure TForm1.Button2Click(Sender: TObject); |
| 179 | +begin |
| 180 | + RunSimpleLearning; |
| 181 | +end; |
| 182 | + |
| 183 | +end. |
0 commit comments