Open
Description
Hello,
I was trying to implement the "hello world" example and exploring the GenomeHandler function parameters.
I was able to put the example running but once I set the max_pooling=False I get the error 'a' must be greater than 0 unless no samples are taken on the devol.run function
Can someone help me on that?
Code
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0],x_train.shape[1], x_train.shape[2], 1).astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1).astype('float32') / 255
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
dataset = ((x_train, y_train), (x_test, y_test))
genome_handler = GenomeHandler(max_conv_layers=6 ,max_dense_layers=2,max_filters=256,max_dense_nodes=1024,input_shape=x_train.shape[1:],n_classes=10, batch_normalization=True, dropout=True, max_pooling=False)
devol = DEvol(genome_handler)
model = devol.run(dataset=dataset, num_generations=1,pop_size=1,epochs=1)
Error
ValueError Traceback (most recent call last)
<ipython-input-36-9cc5827c046e> in <module>
2 num_generations=1,
3 pop_size=1,
----> 4 epochs=1)
c:\users\joao\documents\devol\devollib\devol\devol.py in run(self, dataset, num_generations, pop_size, epochs, fitness, metric)
120
121 # generate and evaluate initial population
--> 122 members = self._generate_random_population(pop_size)
123 pop = self._evaluate_population(members,
124 epochs,
c:\users\joao\documents\devol\devollib\devol\devol.py in _generate_random_population(self, size)
233
234 def _generate_random_population(self, size):
--> 235 return [self.genome_handler.generate() for _ in range(size)]
236
237 def _print_result(self, fitness, generation):
c:\users\joao\documents\devol\devollib\devol\devol.py in <listcomp>(.0)
233
234 def _generate_random_population(self, size):
--> 235 return [self.genome_handler.generate() for _ in range(size)]
236
237 def _print_result(self, fitness, generation):
c:\users\joao\documents\devol\devollib\devol\genome_handler.py in generate(self)
208 for key in self.convolutional_layer_shape:
209 param = self.layer_params[key]
--> 210 genome.append(np.random.choice(param))
211 for i in range(self.dense_layers):
212 for key in self.dense_layer_shape:
mtrand.pyx in mtrand.RandomState.choice()
ValueError: 'a' must be greater than 0 unless no samples are taken
Metadata
Metadata
Assignees
Labels
No labels