-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
74 lines (51 loc) · 2.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
assert tf.test.is_gpu_available()
assert tf.test.is_built_with_cuda()
import pandas as pd
import lib
def train_tcn(train_data, test_data):
window_length = 200
nb_filters = 64
kernel_size = 3
train_sequences = lib.get_seq(train_data['sequence'])
train_labels = lib.get_labels(train_data['label'])
test_sequences = lib.get_seq(test_data['sequence'])
test_labels = lib.get_labels(test_data['label'])
X_train, y_train = lib.extract_sliding_windows(train_sequences, train_labels, window_length)
X_test, y_test = lib.extract_sliding_windows(test_sequences, test_labels, window_length)
model = lib.build_tcn_model(
window_length,
nb_filters=nb_filters,
kernel_size=kernel_size
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test), verbose=1)
model.save("./models/tcn_adfa_model.keras")
# Evaluate the model
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}")
def train_lstm(train_data, test_data):
window_length = 200
units = 128
train_sequences = lib.get_seq(train_data['sequence'])
train_labels = lib.get_labels(train_data['label'])
test_sequences = lib.get_seq(test_data['sequence'])
test_labels = lib.get_labels(test_data['label'])
X_train, y_train = lib.extract_sliding_windows(train_sequences, train_labels, window_length)
X_test, y_test = lib.extract_sliding_windows(test_sequences, test_labels, window_length)
model = lib.build_lstm_model(
window_length,
units=units
)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test), verbose=1)
model.save("./models/lstm_adfa_model.keras")
# Evaluate the model
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}")
if __name__ == '__main__':
# Load data from CSV files
train_d = pd.read_csv("data/train_data.csv")
test_d = pd.read_csv("data/test_data.csv")
train_tcn(train_d, test_d) # Test Loss: 0.2506, Test Accuracy: 0.9540, 200w, 64n, 3k
train_lstm(train_d, test_d) # Test Loss: 0.3576, Test Accuracy: 0.9486, 100w, 96u