forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
278 lines (230 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Copyright (c) 2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import datetime
import os.path as osp
import os
from pprint import pformat
import glog as log
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from torchvision import transforms as t
from tensorboardX import SummaryWriter
from nncf.config import Config
from nncf.dynamic_graph import patch_torch_operators
from nncf.algo_selector import create_compression_algorithm
from datasets import LFW, VGGFace2, MSCeleb1M, IMDBFace, TrillionPairs
from losses.am_softmax import AMSoftmaxLoss
from losses.metric_losses import MetricLosses
from evaluate_lfw import evaluate, compute_embeddings_lfw
from utils.utils import load_model_state, save_model_cpu
import utils.augmentation as augm
from utils.parser_yaml import ArgumentParserWithYaml
from model.common import models_backbones
def train(args):
"""Performs training of a face recognition network"""
input_size = models_backbones[args.model]().get_input_res()
if args.train_dataset == 'vgg':
assert args.t_list
dataset = VGGFace2(args.train, args.t_list, args.t_land)
elif args.train_dataset == 'imdbface':
dataset = IMDBFace(args.train, args.t_list)
elif args.train_dataset == 'trp':
dataset = TrillionPairs(args.train, args.t_list)
else:
dataset = MSCeleb1M(args.train, args.t_list)
if dataset.have_landmarks:
log.info('Use alignment for the train data')
dataset.transform = t.Compose([augm.HorizontalFlipNumpy(p=.5),
augm.CutOutWithPrior(p=0.05, max_area=0.1),
augm.RandomRotationNumpy(10, p=.95),
augm.ResizeNumpy(input_size),
augm.BlurNumpy(k=5, p=.2),
augm.NumpyToTensor(switch_rb=True)])
else:
dataset.transform = t.Compose([augm.ResizeNumpy(input_size),
augm.HorizontalFlipNumpy(),
augm.RandomRotationNumpy(10),
augm.NumpyToTensor(switch_rb=True)])
if args.weighted:
train_weights = dataset.get_weights()
train_weights = torch.DoubleTensor(train_weights)
sampler = torch.utils.data.sampler.WeightedRandomSampler(train_weights, len(train_weights))
train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size,
sampler=sampler, num_workers=3, pin_memory=False)
else:
train_loader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=4, shuffle=True)
lfw = LFW(args.val, args.v_list, args.v_land)
if lfw.use_landmarks:
log.info('Use alignment for the test data')
lfw.transform = t.Compose([augm.ResizeNumpy(input_size),
augm.NumpyToTensor(switch_rb=True)])
else:
lfw.transform = t.Compose([augm.ResizeNumpy((160, 160)),
augm.CenterCropNumpy(input_size),
augm.NumpyToTensor(switch_rb=True)])
log_path = './logs/{:%Y_%m_%d_%H_%M}_{}'.format(datetime.datetime.now(), args.snap_prefix)
writer = SummaryWriter(log_path)
if not osp.exists(args.snap_folder):
os.mkdir(args.snap_folder)
model = models_backbones[args.model](embedding_size=args.embed_size,
num_classes=dataset.get_num_classes(), feature=False)
set_dropout_fn = model.set_dropout_ratio
compression_algo = None
if args.snap_to_resume is not None:
if args.compr_config:
config = Config.from_json(args.compr_config)
compression_algo = create_compression_algorithm(model, config)
model = compression_algo.model
log.info('Resuming snapshot ' + args.snap_to_resume + ' ...')
model = load_model_state(model, args.snap_to_resume, args.devices[0], eval_state=False)
model = torch.nn.DataParallel(model, device_ids=args.devices)
else:
model = torch.nn.DataParallel(model, device_ids=args.devices, output_device=args.devices[0])
model.cuda()
model.train()
cudnn.benchmark = True
if args.to_onnx is not None:
if args.compr_config:
compression_algo.export_model(args.to_onnx)
else:
model = model.eval().cpu()
input_shape = tuple([1, 3] + list(input_size))
with torch.no_grad():
torch.onnx.export(model.module, torch.randn(input_shape), args.to_onnx, verbose=True)
print("Saved to", args.to_onnx)
return
log.info('Face Recognition model:')
log.info(model)
if args.mining_type == 'focal':
softmax_criterion = AMSoftmaxLoss(gamma=args.gamma, m=args.m, margin_type=args.margin_type, s=args.s)
else:
softmax_criterion = AMSoftmaxLoss(t=args.t, m=0.35, margin_type=args.margin_type, s=args.s)
aux_losses = MetricLosses(dataset.get_num_classes(), args.embed_size, writer)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.compr_config:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [0, 2, 4, 6, 8])
else:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [3, 6, 9, 13])
log.info('Epoch length: %d' % len(train_loader))
for epoch_num in range(args.epoch_total_num):
log.info('Epoch: %d' % epoch_num)
scheduler.step()
if epoch_num > 6 or args.compr_config:
set_dropout_fn(0.)
classification_correct = 0
classification_total = 0
for i, data in enumerate(train_loader, 0):
iteration = epoch_num * len(train_loader) + i
if iteration % args.val_step == 0:
snapshot_name = osp.join(args.snap_folder, args.snap_prefix + '_{0}.pt'.format(iteration))
if iteration > 0:
log.info('Saving Snapshot: ' + snapshot_name)
save_model_cpu(model, optimizer, snapshot_name, epoch_num)
log.info('Evaluating Snapshot: ' + snapshot_name)
model.eval()
same_acc, diff_acc, all_acc, auc = evaluate(args, lfw, model, compute_embeddings_lfw,
args.val_batch_size, verbose=False)
model.train()
log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format(same_acc, diff_acc))
log.info('Validation accuracy mean: {0:.4f}'.format(all_acc))
log.info('Validation AUC: {0:.4f}'.format(auc))
writer.add_scalar('Epoch', epoch_num, iteration)
writer.add_scalar('Accuracy/Val_same_accuracy', same_acc, iteration)
writer.add_scalar('Accuracy/Val_diff_accuracy', diff_acc, iteration)
writer.add_scalar('Accuracy/Val_accuracy', all_acc, iteration)
writer.add_scalar('Accuracy/AUC', auc, iteration)
data, label = data['img'], data['label'].cuda()
features, sm_outputs = model(data)
optimizer.zero_grad()
aux_losses.init_iteration()
aux_loss, aux_log = aux_losses(features, label, epoch_num, iteration)
loss_sm = softmax_criterion(sm_outputs, label)
compr_loss = compression_algo.loss() if args.compr_config else 0
loss = loss_sm + aux_loss + compr_loss
loss.backward()
aux_losses.end_iteration()
optimizer.step()
_, predicted = torch.max(sm_outputs.data, 1)
classification_total += int(label.size(0))
classification_correct += int(torch.sum(predicted.eq(label)))
train_acc = float(classification_correct) / classification_total
if i % 10 == 0:
log.info('Iteration %d, Softmax loss: %.4f, Total loss: %.4f' % (iteration, loss_sm, loss) + aux_log)
log.info('Learning rate: %f' % scheduler.get_lr()[0])
writer.add_scalar('Loss/train_loss', loss, iteration)
writer.add_scalar('Loss/softmax_loss', loss_sm, iteration)
writer.add_scalar('Learning_rate', scheduler.get_lr()[0], iteration)
writer.add_scalar('Accuracy/classification', train_acc, iteration)
if args.compr_config and "sparsity_level" in compression_algo.statistics():
log.info('Sparsity_level: %.4f' % compression_algo.statistics()["sparsity_level"])
writer.add_scalar('Sparsity_level', compression_algo.statistics()["sparsity_level"], iteration)
if args.compr_config:
compression_algo.scheduler.step()
if args.compr_config:
compression_algo.scheduler.epoch_step()
def main():
"""Creates a command line parser and starts training"""
parser = ArgumentParserWithYaml(description='Training Face Recognition in PyTorch',
fromfile_prefix_chars='@',
epilog="Please, note that you can parse parameters from a yaml file if \
you add @<path_to_yaml_file> to command line")
#datasets configuration
parser.add_argument('--train_dataset', choices=['vgg', 'ms1m', 'trp', 'imdbface'],
type=str, default='vgg', help='Name of the train dataset.')
parser.add_argument('--train_data_root', dest='train', required=True, type=str, help='Path to train data.')
parser.add_argument('--train_list', dest='t_list', required=False, type=str, help='Path to train data image list.')
parser.add_argument('--train_landmarks', default='', dest='t_land', required=False, type=str,
help='Path to landmarks for the train images.')
parser.add_argument('--val_data_root', dest='val', required=True, type=str, help='Path to val data.')
parser.add_argument('--val_step', type=int, default=1000, help='Evaluate model each val_step during each epoch.')
parser.add_argument('--val_list', dest='v_list', required=True, type=str, help='Path to test data image list.')
parser.add_argument('--val_landmarks', dest='v_land', default='', required=False, type=str,
help='Path to landmarks for test images.')
#model configuration
parser.add_argument('--model', choices=models_backbones.keys(), type=str, default='mobilenet', help='Model type.')
parser.add_argument('--embed_size', type=int, default=256, help='Size of the face embedding.')
#optimizer configuration
parser.add_argument('--train_batch_size', type=int, default=170, help='Train batch size.')
parser.add_argument('--epoch_total_num', type=int, default=30, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.4, help='Learning rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--weight_decay', type=float, default=0.0001, help='Weight decay.')
#loss configuration
parser.add_argument('--mining_type', choices=['focal', 'sv'],
type=str, default='sv', help='Hard mining method in loss.')
parser.add_argument('--t', type=float, default=1.1, help='t in support vector softmax. See https://arxiv.org/abs/1812.11317 for details')
parser.add_argument('--gamma', type=float, default=2., help='Gamma in focal loss. See https://arxiv.org/abs/1708.02002 for details')
parser.add_argument('--m', type=float, default=0.35, help='Margin size for AMSoftmax.')
parser.add_argument('--s', type=float, default=30., help='Scale for AMSoftmax.')
parser.add_argument('--margin_type', choices=['cos', 'arc'],
type=str, default='cos', help='Margin type for AMSoftmax loss.')
#other parameters
parser.add_argument('--devices', type=int, nargs='+', default=[0], help='CUDA devices to use.')
parser.add_argument('--val_batch_size', type=int, default=20, help='Validation batch size.')
parser.add_argument('--snap_folder', type=str, default='./snapshots/', help='Folder to save snapshots.')
parser.add_argument('--snap_prefix', type=str, default='FaceReidNet', help='Prefix for snapshots.')
parser.add_argument('--snap_to_resume', type=str, default=None, help='Snapshot to resume.')
parser.add_argument('--weighted', action='store_true')
parser.add_argument('-c', '--compr_config', help='Path to a file with compression parameters', required=False)
parser.add_argument('--to-onnx', type=str, metavar='PATH', default=None, help='Export to ONNX model by given path')
args = parser.parse_args()
log.info('Arguments:\n' + pformat(args.__dict__))
if args.compr_config:
patch_torch_operators()
with torch.cuda.device(args.devices[0]):
train(args)
if __name__ == '__main__':
main()