PyROS (Pyomo Robust Optimization Solver) is a Pyomo-based meta-solver for non-convex, two-stage adjustable robust optimization problems.
It was developed by Natalie M. Isenberg, Jason A. F. Sherman, and Chrysanthos E. Gounaris of Carnegie Mellon University, in collaboration with John D. Siirola of Sandia National Labs. The developers gratefully acknowledge support from the U.S. Department of Energy's Institute for the Design of Advanced Energy Systems (IDAES).
Below is an overview of the type of optimization models PyROS can accommodate.
- PyROS is suitable for optimization models of continuous variables that may feature non-linearities (including non-convexities) in both the variables and uncertain parameters.
- PyROS can handle equality constraints defining state variables, including implicit state variables that cannot be eliminated via reformulation.
- PyROS allows for two-stage optimization problems that may feature both first-stage and second-stage degrees of freedom.
PyROS is designed to operate on deterministic models of the general form
\begin{array}{clll} \displaystyle \min_{\substack{x \in \mathcal{X}, \\ z \in \mathbb{R}^{n_z}, y\in\mathbb{R}^{n_y}}} & ~~ f_1\left(x\right) + f_2(x,z,y; q^{\text{nom}}) & \\ \displaystyle \text{s.t.} & ~~ g_i(x, z, y; q^{\text{nom}}) \leq 0 & \forall\,i \in \mathcal{I} \\ & ~~ h_j(x,z,y; q^{\text{nom}}) = 0 & \forall\,j \in \mathcal{J} \\ \end{array}
where:
- x \in \mathcal{X} are the "design" variables (i.e., first-stage degrees of freedom), where \mathcal{X} \subseteq \mathbb{R}^{n_x} is the feasible space defined by the model constraints (including variable bounds specifications) referencing x only.
- z \in \mathbb{R}^{n_z} are the "control" variables (i.e., second-stage degrees of freedom)
- y \in \mathbb{R}^{n_y} are the "state" variables
- q \in \mathbb{R}^{n_q} is the vector of model parameters considered uncertain, and q^{\text{nom}} is the vector of nominal values associated with those.
- f_1\left(x\right) are the terms of the objective function that depend only on design variables
- f_2\left(x, z, y; q\right) are the terms of the objective function that depend on all variables and the uncertain parameters
- g_i\left(x, z, y; q\right) is the i^\text{th} inequality constraint function in set \mathcal{I} (see :ref:`Note <var-bounds-to-ineqs>`)
- h_j\left(x, z, y; q\right) is the j^\text{th} equality constraint function in set \mathcal{J} (see :ref:`Note <unique-mapping>`)
Note
PyROS accepts models in which bounds are directly imposed on
Var
objects representing components of the variables z
and y. These models are cast to
:ref:`the form above <deterministic-model>`
by reformulating the bounds as inequality constraints.
Note
A key requirement of PyROS is that each value of \left(x, z, q \right) maps to a unique value of y, a property that is assumed to be properly enforced by the system of equality constraints \mathcal{J}. If the mapping is not unique, then the selection of 'state' (i.e., not degree of freedom) variables y is incorrect, and one or more of the y variables should be appropriately redesignated to be part of either x or z.
In order to cast the robust optimization counterpart of the :ref:`deterministic model <deterministic-model>`, we now assume that the uncertain parameters may attain any realization in a compact uncertainty set \mathcal{Q} \subseteq \mathbb{R}^{n_q} containing the nominal value q^{\text{nom}}. The set \mathcal{Q} may be either continuous or discrete.
Based on the above notation, the form of the robust counterpart addressed by PyROS is
\begin{array}{ccclll} \displaystyle \min_{x \in \mathcal{X}} & \displaystyle \max_{q \in \mathcal{Q}} & \displaystyle \min_{\substack{z \in \mathbb{R}^{n_z},\\y \in \mathbb{R}^{n_y}}} \ \ & \displaystyle ~~ f_1\left(x\right) + f_2\left(x, z, y, q\right) \\ & & \text{s.t.}~ & \displaystyle ~~ g_i\left(x, z, y, q\right) \leq 0 & & \forall\, i \in \mathcal{I}\\ & & & \displaystyle ~~ h_j\left(x, z, y, q\right) = 0 & & \forall\,j \in \mathcal{J} \end{array}
PyROS solves problems of this form using the Generalized Robust Cutting-Set algorithm developed in [Isenberg_et_al]_.
When using PyROS, please consider citing the above paper.
The required inputs to the PyROS solver are:
- The deterministic optimization model
- List of first-stage ("design") variables
- List of second-stage ("control") variables
- List of parameters considered uncertain
- The uncertainty set
- Subordinate local and global nonlinear programming (NLP) solvers
These are more elaborately presented in the :ref:`Solver Interface <solver-interface>` section.
Note
Any variables in the model not specified to be first-stage or second-stage variables are automatically considered to be state variables.
.. autoclass:: pyomo.contrib.pyros.PyROS :members: solve
Note
Upon successful convergence of PyROS, the solution returned is certified to be robust optimal only if:
- master problems are solved to global optimality
(by specifying
solve_master_globally=True
) - a worst-case objective focus is chosen
(by specifying
objective_focus=ObjectiveType.worst_case
)
Otherwise, the solution returned is certified to only be robust feasible.
Uncertainty sets are represented by subclasses of the :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` abstract base class. PyROS provides a suite of pre-implemented subclasses representing commonly used uncertainty sets. Custom user-defined uncertainty set types may be implemented by subclassing the :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` class. The intersection of a sequence of concrete :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` instances can be easily constructed by instantiating the pre-implemented :class:`~pyomo.contrib.pyros.uncertainty_sets.IntersectionSet` subclass.
The table that follows provides mathematical definitions of the various abstract and pre-implemented :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` subclasses.
Uncertainty Set Type | Input Data | Mathematical Definition |
---|---|---|
:class:`~pyomo.contrib.pyros.uncertainty_sets.BoxSet` | \begin{array}{l} q ^{\text{L}} \in \mathbb{R}^{n}, \\ q^{\text{U}} \in \mathbb{R}^{n} \end{array} | \{q \in \mathbb{R}^n \mid q^\mathrm{L} \leq q \leq q^\mathrm{U}\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.CardinalitySet` | \begin{array}{l} q^{0} \in \mathbb{R}^{n}, \\ \hat{q} \in \mathbb{R}_{+}^{n}, \\ \Gamma \in [0, n] \end{array} | \left\{ q \in \mathbb{R}^{n} \middle| \begin{array}{l} q = q^{0} + \hat{q} \circ \xi \\ \displaystyle \sum_{i=1}^{n} \xi_{i} \leq \Gamma \\ \xi \in [0, 1]^{n} \end{array} \right\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.BudgetSet` | \begin{array}{l} q^{0} \in \mathbb{R}^{n}, \\ b \in \mathbb{R}_{+}^{L}, \\ B \in \{0, 1\}^{L \times n} \end{array} | \left\{ q \in \mathbb{R}^{n} \middle| \begin{array}{l} \begin{pmatrix} B \\ -I \end{pmatrix} q \leq \begin{pmatrix} b + Bq^{0} \\ -q^{0} \end{pmatrix} \end{array} \right\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.FactorModelSet` | \begin{array}{l} q^{0} \in \mathbb{R}^{n}, \\ \Psi \in \mathbb{R}^{n \times F}, \\ \beta \in [0, 1] \end{array} | \left\{ q \in \mathbb{R}^{n} \middle| \begin{array}{l} q = q^{0} + \Psi \xi \\ \displaystyle\bigg| \sum_{j=1}^{F} \xi_{j} \bigg| \leq \beta F \\ \xi \in [-1, 1]^{F} \\ \end{array} \right\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet` | \begin{array}{l} A \in \mathbb{R}^{m \times n}, \\ b \in \mathbb{R}^{m}\end{array} | \{q \in \mathbb{R}^{n} \mid A q \leq b\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet` | \begin{array}{l} q^0 \in \mathbb{R}^{n}, \\ \alpha \in \mathbb{R}_{+}^{n} \end{array} | \left\{ q \in \mathbb{R}^{n} \middle| \begin{array}{l} \displaystyle\sum_{\substack{i = 1: \\ \alpha_{i} > 0}}^{n} \left(\frac{q_{i} - q_{i}^{0}}{\alpha_{i}}\right)^2 \leq 1 \\ q_{i} = q_{i}^{0} \,\forall\,i : \alpha_{i} = 0 \end{array} \right\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet` | \begin{array}{l} q^0 \in \mathbb{R}^n, \\ P \in \mathbb{S}_{++}^{n}, \\ s \in \mathbb{R}_{+} \end{array} | \{q \in \mathbb{R}^{n} \mid (q - q^{0})^{\intercal} P^{-1} (q - q^{0}) \leq s\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` | g: \mathbb{R}^{n} \to \mathbb{R}^{m} | \{q \in \mathbb{R}^{n} \mid g(q) \leq 0\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet` | q^{1}, q^{2},\dots , q^{S} \in \mathbb{R}^{n} | \{q^{1}, q^{2}, \dots , q^{S}\} |
:class:`~pyomo.contrib.pyros.uncertainty_sets.IntersectionSet` | \mathcal{Q}_{1}, \mathcal{Q}_{2}, \dots , \mathcal{Q}_{m} \subset \mathbb{R}^{n} | \displaystyle \bigcap_{i=1}^{m} \mathcal{Q}_{i} |
Note
Each of the PyROS uncertainty set classes inherits from the :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` abstract base class.
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.BoxSet :show-inheritance: :special-members: bounds, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.CardinalitySet :show-inheritance: :special-members: origin, positive_deviation, gamma, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.BudgetSet :show-inheritance: :special-members: coefficients_mat, rhs_vec, origin, budget_membership_mat, budget_rhs_vec, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.FactorModelSet :show-inheritance: :special-members: origin, number_of_factors, psi_mat, beta, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet :show-inheritance: :special-members: coefficients_mat, rhs_vec, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet :show-inheritance: :special-members: center, half_lengths, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet :show-inheritance: :special-members: center, shape_matrix, scale, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.UncertaintySet :show-inheritance: :special-members: parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet :show-inheritance: :special-members: scenarios, type, parameter_bounds, dim, point_in_set
.. autoclass:: pyomo.contrib.pyros.uncertainty_sets.IntersectionSet :show-inheritance: :special-members: all_sets, type, parameter_bounds, dim, point_in_set
In this section, we illustrate the usage of PyROS with a modeling example. The deterministic problem of interest is called hydro (available here), a QCQP taken from the GAMS Model Library. We have converted the model to Pyomo format using the GAMS Convert tool.
The hydro model features 31 variables,
of which 13 are degrees of freedom and 18 are state variables.
Moreover, there are
6 linear inequality constraints,
12 linear equality constraints,
6 non-linear (quadratic) equality constraints,
and a quadratic objective.
We have extended this model by converting one objective coefficient,
two constraint coefficients, and one constraint right-hand side
into Param
objects so that they can be considered uncertain later on.
Note
Per our analysis, the hydro problem satisfies the requirement that each value of \left(x, z, q \right) maps to a unique value of y, which, in accordance with :ref:`our earlier note <unique-mapping>`, indicates a proper partitioning of the model variables into (first-stage and second-stage) degrees of freedom and state variables.
In anticipation of using the PyROS solver and building the deterministic Pyomo model:
>>> # === Required import ===
>>> import pyomo.environ as pyo
>>> import pyomo.contrib.pyros as pyros
>>> # === Instantiate the PyROS solver object ===
>>> pyros_solver = pyo.SolverFactory("pyros")
The deterministic Pyomo model for hydro is shown below.
Note
Primitive data (Python literals) that have been hard-coded within a
deterministic model cannot be later considered uncertain,
unless they are first converted to Param
objects within
the ConcreteModel
object.
Furthermore, any Param
object that is to be later considered
uncertain must have the property mutable=True
.
Note
In case modifying the mutable
property inside the deterministic
model object itself is not straightforward in your context,
you may consider adding the following statement after
import pyomo.environ as pyo
but before defining the model
object: pyo.Param.DefaultMutable = True
.
For all Param
objects declared after this statement,
the attribute mutable
is set to True
by default.
Hence, non-mutable Param
objects are now declared by
explicitly passing the argument mutable=False
to the
Param
constructor.
>>> # === Construct the Pyomo model object ===
>>> m = pyo.ConcreteModel()
>>> m.name = "hydro"
>>> # === Define variables ===
>>> m.x1 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x2 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x3 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x4 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x5 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x6 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x7 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x8 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x9 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x10 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x11 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x12 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x13 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x14 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x15 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x16 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x17 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x18 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x19 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x20 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x21 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x22 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x23 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x24 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x25 = pyo.Var(within=pyo.Reals,bounds=(100000,100000),initialize=100000)
>>> m.x26 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x27 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x28 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x29 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x30 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x31 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> # === Define parameters ===
>>> m.set_of_params = pyo.Set(initialize=[0, 1, 2, 3])
>>> nominal_values = {0:82.8*0.0016, 1:4.97, 2:4.97, 3:1800}
>>> m.p = pyo.Param(m.set_of_params, initialize=nominal_values, mutable=True)
>>> # === Specify the objective function ===
>>> m.obj = pyo.Objective(expr=m.p[0]*m.x1**2 + 82.8*8*m.x1 + 82.8*0.0016*m.x2**2 +
... 82.8*82.8*8*m.x2 + 82.8*0.0016*m.x3**2 + 82.8*8*m.x3 +
... 82.8*0.0016*m.x4**2 + 82.8*8*m.x4 + 82.8*0.0016*m.x5**2 +
... 82.8*8*m.x5 + 82.8*0.0016*m.x6**2 + 82.8*8*m.x6 + 248400,
... sense=pyo.minimize)
>>> # === Specify the constraints ===
>>> m.c2 = pyo.Constraint(expr=-m.x1 - m.x7 + m.x13 + 1200<= 0)
>>> m.c3 = pyo.Constraint(expr=-m.x2 - m.x8 + m.x14 + 1500 <= 0)
>>> m.c4 = pyo.Constraint(expr=-m.x3 - m.x9 + m.x15 + 1100 <= 0)
>>> m.c5 = pyo.Constraint(expr=-m.x4 - m.x10 + m.x16 + m.p[3] <= 0)
>>> m.c6 = pyo.Constraint(expr=-m.x5 - m.x11 + m.x17 + 950 <= 0)
>>> m.c7 = pyo.Constraint(expr=-m.x6 - m.x12 + m.x18 + 1300 <= 0)
>>> m.c8 = pyo.Constraint(expr=12*m.x19 - m.x25 + m.x26 == 24000)
>>> m.c9 = pyo.Constraint(expr=12*m.x20 - m.x26 + m.x27 == 24000)
>>> m.c10 = pyo.Constraint(expr=12*m.x21 - m.x27 + m.x28 == 24000)
>>> m.c11 = pyo.Constraint(expr=12*m.x22 - m.x28 + m.x29 == 24000)
>>> m.c12 = pyo.Constraint(expr=12*m.x23 - m.x29 + m.x30 == 24000)
>>> m.c13 = pyo.Constraint(expr=12*m.x24 - m.x30 + m.x31 == 24000)
>>> m.c14 = pyo.Constraint(expr=-8e-5*m.x7**2 + m.x13 == 0)
>>> m.c15 = pyo.Constraint(expr=-8e-5*m.x8**2 + m.x14 == 0)
>>> m.c16 = pyo.Constraint(expr=-8e-5*m.x9**2 + m.x15 == 0)
>>> m.c17 = pyo.Constraint(expr=-8e-5*m.x10**2 + m.x16 == 0)
>>> m.c18 = pyo.Constraint(expr=-8e-5*m.x11**2 + m.x17 == 0)
>>> m.c19 = pyo.Constraint(expr=-8e-5*m.x12**2 + m.x18 == 0)
>>> m.c20 = pyo.Constraint(expr=-4.97*m.x7 + m.x19 == 330)
>>> m.c21 = pyo.Constraint(expr=-m.p[1]*m.x8 + m.x20 == 330)
>>> m.c22 = pyo.Constraint(expr=-4.97*m.x9 + m.x21 == 330)
>>> m.c23 = pyo.Constraint(expr=-4.97*m.x10 + m.x22 == 330)
>>> m.c24 = pyo.Constraint(expr=-m.p[2]*m.x11 + m.x23 == 330)
>>> m.c25 = pyo.Constraint(expr=-4.97*m.x12 + m.x24 == 330)
First, we need to collect into a list those Param
objects of our model
that represent potentially uncertain parameters.
For the purposes of our example, we shall assume uncertainty in the model
parameters [m.p[0], m.p[1], m.p[2], m.p[3]]
, for which we can
conveniently utilize the object m.p
(itself an indexed Param
object).
>>> # === Specify which parameters are uncertain ===
>>> # We can pass IndexedParams this way to PyROS,
>>> # or as an expanded list per index
>>> uncertain_parameters = [m.p]
Note
Any Param
object that is to be considered uncertain by PyROS
must have the property mutable=True
.
PyROS will seek to identify solutions that remain feasible for any realization of these parameters included in an uncertainty set. To that end, we need to construct an :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` object. In our example, let us utilize the :class:`~pyomo.contrib.pyros.uncertainty_sets.BoxSet` constructor to specify an uncertainty set of simple hyper-rectangular geometry. For this, we will assume each parameter value is uncertain within a percentage of its nominal value. Constructing this specific :class:`~pyomo.contrib.pyros.uncertainty_sets.UncertaintySet` object can be done as follows:
>>> # === Define the pertinent data ===
>>> relative_deviation = 0.15
>>> bounds = [
... (nominal_values[i] - relative_deviation*nominal_values[i],
... nominal_values[i] + relative_deviation*nominal_values[i])
... for i in range(4)
... ]
>>> # === Construct the desirable uncertainty set ===
>>> box_uncertainty_set = pyros.BoxSet(bounds=bounds)
PyROS requires the user to supply one local and one global NLP solver to use for solving sub-problems. For convenience, we shall have PyROS invoke BARON as both the local and the global NLP solver:
>>> # === Designate local and global NLP solvers ===
>>> local_solver = pyo.SolverFactory('baron')
>>> global_solver = pyo.SolverFactory('baron')
Note
Additional NLP optimizers can be automatically used in the event the primary
subordinate local or global optimizer passed
to the PyROS :meth:`~pyomo.contrib.pyros.PyROS.solve` method
does not successfully solve a subproblem to an appropriate termination
condition. These alternative solvers are provided through the optional
keyword arguments backup_local_solvers
and backup_global_solvers
.
The final step in solving a model with PyROS is to construct the
remaining required inputs, namely
first_stage_variables
and second_stage_variables
.
Below, we present two separate cases.
PyROS will return one of six termination conditions upon completion. These termination conditions are defined through the :class:`~pyomo.contrib.pyros.util.pyrosTerminationCondition` enumeration and tabulated below.
Termination Condition | Description |
---|---|
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.robust_optimal` | The final solution is robust optimal |
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.robust_feasible` | The final solution is robust feasible |
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.robust_infeasible` | The posed problem is robust infeasible |
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.max_iter` | Maximum number of GRCS iteration reached |
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.time_out` | Maximum number of time reached |
:attr:`~pyomo.contrib.pyros.util.pyrosTerminationCondition.subsolver_error` | Unacceptable return status(es) from a user-supplied sub-solver |
If we choose to designate all variables as either design or state variables,
without any control variables (i.e., all degrees of freedom are first-stage),
we can use PyROS to solve the single-stage problem as shown below.
In particular, let us instruct PyROS that variables
m.x1
through m.x6
, m.x19
through m.x24
, and m.x31
correspond to first-stage degrees of freedom.
>>> # === Designate which variables correspond to first-stage
>>> # and second-stage degrees of freedom ===
>>> first_stage_variables = [
... m.x1, m.x2, m.x3, m.x4, m.x5, m.x6,
... m.x19, m.x20, m.x21, m.x22, m.x23, m.x24, m.x31,
... ]
>>> second_stage_variables = []
>>> # The remaining variables are implicitly designated to be state variables
>>> # === Call PyROS to solve the robust optimization problem ===
>>> results_1 = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set=box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... objective_focus=pyros.ObjectiveType.worst_case,
... solve_master_globally=True,
... load_solution=False,
... )
==============================================================================
PyROS: The Pyomo Robust Optimization Solver...
...
------------------------------------------------------------------------------
Robust optimal solution identified.
------------------------------------------------------------------------------
...
------------------------------------------------------------------------------
All done. Exiting PyROS.
==============================================================================
>>> # === Query results ===
>>> time = results_1.time
>>> iterations = results_1.iterations
>>> termination_condition = results_1.pyros_termination_condition
>>> objective = results_1.final_objective_value
>>> # === Print some results ===
>>> single_stage_final_objective = round(objective,-1)
>>> print(f"Final objective value: {single_stage_final_objective}")
Final objective value: 48367380.0
>>> print(f"PyROS termination condition: {termination_condition}")
PyROS termination condition: pyrosTerminationCondition.robust_optimal
The results object returned by PyROS allows you to query the following information from the solve call:
iterations
: total iterations of the algorithmtime
: total wallclock time (or elapsed time) in secondspyros_termination_condition
: the GRCS algorithm termination conditionfinal_objective_value
: the final objective function value.
The :ref:`preceding code snippet <single-stage-problem>` demonstrates how to retrieve this information.
If we pass load_solution=True
(the default setting)
to the :meth:`~pyomo.contrib.pyros.PyROS.solve` method,
then the solution at which PyROS terminates will be loaded to
the variables of the original deterministic model.
Note that in the :ref:`preceding code snippet <single-stage-problem>`,
we set load_solution=False
to ensure the next set of runs shown here can
utilize the initial point loaded to the original deterministic model,
as the initial point may affect the performance of sub-solvers.
Note
The reported final_objective_value
and final model variable values
depend on the selection of the option objective_focus
.
The final_objective_value
is the sum of first-stage
and second-stage objective functions.
If objective_focus = ObjectiveType.nominal
,
second-stage objective and variables are evaluated at
the nominal realization of the uncertain parameters, q^{\text{nom}}.
If objective_focus = ObjectiveType.worst_case
, second-stage objective
and variables are evaluated at the worst-case realization
of the uncertain parameters, q^{k^\ast}
where k^\ast = \mathrm{argmax}_{k \in \mathcal{K}}~f_2(x,z^k,y^k,q^k).
For this next set of runs, we will
assume that some of the previously designated first-stage degrees of
freedom are in fact second-stage degrees of freedom.
PyROS handles second-stage degrees of freedom via the use of polynomial
decision rules, of which the degree is controlled through the
optional keyword argument decision_rule_order
to the PyROS
:meth:`~pyomo.contrib.pyros.PyROS.solve` method.
In this example, we select affine decision rules by setting
decision_rule_order=1
:
>>> # === Define the variable partitioning
>>> first_stage_variables =[m.x5, m.x6, m.x19, m.x22, m.x23, m.x24, m.x31]
>>> second_stage_variables = [m.x1, m.x2, m.x3, m.x4, m.x20, m.x21]
>>> # The remaining variables are implicitly designated to be state variables
>>> # === Call PyROS to solve the robust optimization problem ===
>>> results_2 = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set=box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... objective_focus=pyros.ObjectiveType.worst_case,
... solve_master_globally=True,
... decision_rule_order=1,
... )
==============================================================================
PyROS: The Pyomo Robust Optimization Solver...
...
------------------------------------------------------------------------------
Robust optimal solution identified.
------------------------------------------------------------------------------
...
------------------------------------------------------------------------------
All done. Exiting PyROS.
==============================================================================
>>> # === Compare final objective to the single-stage solution
>>> two_stage_final_objective = round(
... pyo.value(results_2.final_objective_value),
... -1,
... )
>>> percent_difference = 100 * (
... two_stage_final_objective - single_stage_final_objective
... ) / (single_stage_final_objective)
>>> print("Percent objective change relative to constant decision rules "
... f"objective: {percent_difference:.2f}")
Percent objective change relative to constant decision rules objective: -24...
For this example, we notice a ~25% decrease in the final objective value when switching from a static decision rule (no second-stage recourse) to an affine decision rule.
Like other Pyomo solver interface methods,
:meth:`~pyomo.contrib.pyros.PyROS.solve`
provides support for specifying options indirectly by passing
a keyword argument options
, whose value must be a :class:`dict`
mapping names of arguments to :meth:`~pyomo.contrib.pyros.PyROS.solve`
to their desired values.
For example, the solve()
statement in the
:ref:`two-stage problem snippet <example-two-stg>`
could have been equivalently written as:
>>> results_2 = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set=box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... options={
... "objective_focus": pyros.ObjectiveType.worst_case,
... "solve_master_globally": True,
... "decision_rule_order": 1,
... },
... )
==============================================================================
PyROS: The Pyomo Robust Optimization Solver...
...
------------------------------------------------------------------------------
Robust optimal solution identified.
------------------------------------------------------------------------------
...
------------------------------------------------------------------------------
All done. Exiting PyROS.
==============================================================================
In the event an argument is passed directly
by position or keyword, and indirectly through options
,
an appropriate warning is issued,
and the value passed directly takes precedence over the value
passed through options
.
In conjunction with standard Python control flow tools,
PyROS facilitates a "price of robustness" analysis for a model of interest
through the evaluation and comparison of the robust optimal
objective function value across any appropriately constructed hierarchy
of uncertainty sets.
In this example, we consider a sequence of
box uncertainty sets centered on the nominal uncertain
parameter realization, such that each box is parameterized
by a real value specifying a relative box size.
To this end, we construct an iterable called relative_deviation_list
whose entries are float
values representing the relative sizes.
We then loop through relative_deviation_list
so that for each relative
size, the corresponding robust optimal objective value
can be evaluated by creating an appropriate
:class:`~pyomo.contrib.pyros.uncertainty_sets.BoxSet`
instance and invoking the PyROS solver:
>>> # This takes a long time to run and therefore is not a doctest >>> # === An array of maximum relative deviations from the nominal uncertain >>> # parameter values to utilize in constructing box sets >>> relative_deviation_list = [0.00, 0.10, 0.20, 0.30, 0.40] >>> # === Final robust optimal objectives >>> robust_optimal_objectives = [] >>> for relative_deviation in relative_deviation_list: # doctest: +SKIP ... bounds = [ ... (nominal_values[i] - relative_deviation*nominal_values[i], ... nominal_values[i] + relative_deviation*nominal_values[i]) ... for i in range(4) ... ] ... box_uncertainty_set = pyros.BoxSet(bounds = bounds) ... results = pyros_solver.solve( ... model=m, ... first_stage_variables=first_stage_variables, ... second_stage_variables=second_stage_variables, ... uncertain_params=uncertain_parameters, ... uncertainty_set= box_uncertainty_set, ... local_solver=local_solver, ... global_solver=global_solver, ... objective_focus=pyros.ObjectiveType.worst_case, ... solve_master_globally=True, ... decision_rule_order=1, ... ) ... is_robust_optimal = ( ... results.pyros_termination_condition ... == pyros.pyrosTerminationCondition.robust_optimal ... ) ... if not is_robust_optimal: ... print(f"Instance for relative deviation: {relative_deviation} " ... "not solved to robust optimality.") ... robust_optimal_objectives.append("-----") ... else: ... robust_optimal_objectives.append(str(results.final_objective_value))
For this example, we obtain the following price of robustness results:
Uncertainty Set Size (+/-) o | Robust Optimal Objective | % Increase x |
---|---|---|
0.00 | 35,837,659.18 | 0.00 % |
0.10 | 36,135,182.66 | 0.83 % |
0.20 | 36,437,979.81 | 1.68 % |
0.30 | 43,478,190.91 | 21.32 % |
0.40 | robust_infeasible |
\text{-----} |
Notice that PyROS was successfully able to determine the robust infeasibility of the problem under the largest uncertainty set.
o Relative Deviation from Nominal Realization
x Relative to Deterministic Optimal Objective
This example clearly illustrates the potential impact of the uncertainty set size on the robust optimal objective function value and demonstrates the ease of implementing a price of robustness study for a given optimization problem under uncertainty.
The PyROS solver log output is controlled through the optional
progress_logger
argument, itself cast to
a standard Python logger (:py:class:`logging.Logger`) object
at the outset of a :meth:`~pyomo.contrib.pyros.PyROS.solve` call.
The level of detail of the solver log output
can be adjusted by adjusting the level of the
logger object; see :ref:`the following table <table-logging-levels>`.
Note that by default, progress_logger
is cast to a logger of level
:py:obj:`logging.INFO`.
We refer the reader to the :doc:`official Python logging library documentation <python:library/logging>` for customization of Python logger objects; for a basic tutorial, see the :doc:`logging HOWTO <python:howto/logging>`.
Logging Level | Output Messages |
---|---|
:py:obj:`logging.ERROR` |
|
:py:obj:`logging.WARNING` |
|
:py:obj:`logging.INFO` |
|
:py:obj:`logging.DEBUG` |
|
An example of an output log produced through the default PyROS progress logger is shown in :ref:`the snippet that follows <solver-log-snippet>`. Observe that the log contains the following information:
- Introductory information (lines 1--18). Includes the version number, author information, (UTC) time at which the solver was invoked, and, if available, information on the local Git branch and commit hash.
- Summary of solver options (lines 19--38).
- Preprocessing information (lines 39--41). Wall time required for preprocessing the deterministic model and associated components, i.e. standardizing model components and adding the decision rule variables and equations.
- Model component statistics (lines 42--58). Breakdown of model component statistics. Includes components added by PyROS, such as the decision rule variables and equations.
- Iteration log table (lines 59--69). Summary information on the problem iterates and subproblem outcomes. The constituent columns are defined in detail in :ref:`the table following the snippet <table-iteration-log-columns>`.
- Termination message (lines 70--71). Very brief summary of the termination outcome.
- Timing statistics (lines 72--88).
Tabulated breakdown of the solver timing statistics, based on a
:class:`pyomo.common.timing.HierarchicalTimer` printout.
The identifiers are as follows:
main
: Total time elapsed by the solver.main.dr_polishing
: Total time elapsed by the subordinate solvers on polishing of the decision rules.main.global_separation
: Total time elapsed by the subordinate solvers on global separation subproblems.main.local_separation
: Total time elapsed by the subordinate solvers on local separation subproblems.main.master
: Total time elapsed by the subordinate solvers on the master problems.main.master_feasibility
: Total time elapsed by the subordinate solvers on the master feasibility problems.main.preprocessing
: Total preprocessing time.main.other
: Total overhead time.
- Termination statistics (lines 89--94). Summary of statistics related to the iterate at which PyROS terminates.
- Exit message (lines 95--96).
==============================================================================
PyROS: The Pyomo Robust Optimization Solver, v1.2.9.
Pyomo version: 6.7.0
Commit hash: unknown
Invoked at UTC 2023-12-16T00:00:00.000000
Developed by: Natalie M. Isenberg (1), Jason A. F. Sherman (1),
John D. Siirola (2), Chrysanthos E. Gounaris (1)
(1) Carnegie Mellon University, Department of Chemical Engineering
(2) Sandia National Laboratories, Center for Computing Research
The developers gratefully acknowledge support from the U.S. Department
of Energy's Institute for the Design of Advanced Energy Systems (IDAES).
==============================================================================
================================= DISCLAIMER =================================
PyROS is still under development.
Please provide feedback and/or report any issues by creating a ticket at
https://github.com/Pyomo/pyomo/issues/new/choose
==============================================================================
Solver options:
time_limit=None
keepfiles=False
tee=False
load_solution=True
objective_focus=<ObjectiveType.worst_case: 1>
nominal_uncertain_param_vals=[0.13248000000000001, 4.97, 4.97, 1800]
decision_rule_order=1
solve_master_globally=True
max_iter=-1
robust_feasibility_tolerance=0.0001
separation_priority_order={}
progress_logger=<PreformattedLogger pyomo.contrib.pyros (INFO)>
backup_local_solvers=[]
backup_global_solvers=[]
subproblem_file_directory=None
bypass_local_separation=False
bypass_global_separation=False
p_robustness={}
------------------------------------------------------------------------------
Preprocessing...
Done preprocessing; required wall time of 0.175s.
------------------------------------------------------------------------------
Model statistics:
Number of variables : 62
Epigraph variable : 1
First-stage variables : 7
Second-stage variables : 6
State variables : 18
Decision rule variables : 30
Number of uncertain parameters : 4
Number of constraints : 81
Equality constraints : 24
Coefficient matching constraints : 0
Decision rule equations : 6
All other equality constraints : 18
Inequality constraints : 57
First-stage inequalities (incl. certain var bounds) : 10
Performance constraints (incl. var bounds) : 47
------------------------------------------------------------------------------
Itn Objective 1-Stg Shift 2-Stg Shift #CViol Max Viol Wall Time (s)
------------------------------------------------------------------------------
0 3.5838e+07 - - 5 1.8832e+04 1.741
1 3.5838e+07 3.5184e-15 3.9404e-15 10 4.2516e+06 3.766
2 3.5993e+07 1.8105e-01 7.1406e-01 13 5.2004e+06 6.288
3 3.6285e+07 5.1968e-01 7.7753e-01 4 1.7892e+04 8.247
4 3.6285e+07 9.1166e-13 1.9702e-15 0 7.1157e-10g 11.456
------------------------------------------------------------------------------
Robust optimal solution identified.
------------------------------------------------------------------------------
Timing breakdown:
Identifier ncalls cumtime percall %
-----------------------------------------------------------
main 1 11.457 11.457 100.0
------------------------------------------------------
dr_polishing 4 0.682 0.171 6.0
global_separation 47 1.109 0.024 9.7
local_separation 235 5.810 0.025 50.7
master 5 1.353 0.271 11.8
master_feasibility 4 0.247 0.062 2.2
preprocessing 1 0.429 0.429 3.7
other n/a 1.828 n/a 16.0
======================================================
===========================================================
------------------------------------------------------------------------------
Termination stats:
Iterations : 5
Solve time (wall s) : 11.457
Final objective value : 3.6285e+07
Termination condition : pyrosTerminationCondition.robust_optimal
------------------------------------------------------------------------------
All done. Exiting PyROS.
==============================================================================
The iteration log table is designed to provide, in a concise manner, important information about the progress of the iterative algorithm for the problem of interest. The constituent columns are defined in the :ref:`table that follows <table-iteration-log-columns>`.
Column Name | Definition |
---|---|
Itn | Iteration number. |
Objective | Master solution objective function value.
If the objective of the deterministic model provided
has a maximization sense,
then the negative of the objective function value is displayed.
Expect this value to trend upward as the iteration number
increases.
If the master problems are solved globally
(by passing solve_master_globally=True ),
then after the iteration number exceeds the number of uncertain parameters,
this value should be monotonically nondecreasing
as the iteration number is increased.
A dash ("-") is produced in lieu of a value if the master
problem of the current iteration is not solved successfully. |
1-Stg Shift | Infinity norm of the relative difference between the first-stage variable vectors of the master solutions of the current and previous iterations. Expect this value to trend downward as the iteration number increases. A dash ("-") is produced in lieu of a value if the current iteration number is 0, there are no first-stage variables, or the master problem of the current iteration is not solved successfully. |
2-Stg Shift | Infinity norm of the relative difference between the second-stage variable vectors (evaluated subject to the nominal uncertain parameter realization) of the master solutions of the current and previous iterations. Expect this value to trend downward as the iteration number increases. A dash ("-") is produced in lieu of a value if the current iteration number is 0, there are no second-stage variables, or the master problem of the current iteration is not solved successfully. |
#CViol | Number of performance constraints found to be violated during
the separation step of the current iteration.
Unless a custom prioritization of the model's performance constraints
is specified (through the separation_priority_order argument),
expect this number to trend downward as the iteration number increases.
A "+" is appended if not all of the separation problems
were solved successfully, either due to custom prioritization, a time out,
or an issue encountered by the subordinate optimizers.
A dash ("-") is produced in lieu of a value if the separation
routine is not invoked during the current iteration. |
Max Viol | Maximum scaled performance constraint violation. Expect this value to trend downward as the iteration number increases. A 'g' is appended to the value if the separation problems were solved globally during the current iteration. A dash ("-") is produced in lieu of a value if the separation routine is not invoked during the current iteration, or if there are no performance constraints. |
Wall time (s) | Total time elapsed by the solver, in seconds, up to the end of the current iteration. |
Please provide feedback and/or report any problems by opening an issue on the Pyomo GitHub page.