Description
Hello JupyterHub team,
I've been exploring the current documentation and setup processes for JupyterHub on Kubernetes, primarily managed through Helm. This setup works well for basic deployments, but I've noticed a potential gap for large-scale, enterprise-grade deployments.
Many enterprise data science and engineering teams might prefer integrating JupyterHub with existing GitOps workflows, typically managed via FluxCD or ArgoCD, rather than directly using Helm for every change. This approach leverages their existing CI/CD pipelines and enhances maintainability and scalability.
Given this, I propose expanding the documentation to include detailed guidance on integrating JupyterHub with FluxCD and ArgoCD. This enhancement will:
- Provide step-by-step instructions on setting up JupyterHub using FluxCD/ArgoCD for resource and configuration reconciliation.
- Include practical configurations for a multi-user, highly available JupyterHub environment suitable for enterprise-level deployment, especially those requiring substantial GPU resources.
- Offer comprehensive debugging documentation to assist teams in quickly resolving issues.
I believe these additions will significantly streamline the setup process for large teams and institutions, reducing the overhead associated with integrating JupyterHub into large-scale infrastructure.
I am eager to contribute by drafting the documentation and configuration examples. Before proceeding, I'd like to gather feedback on this idea and any specific requirements or suggestions the community or maintainers might have.
Looking forward to your thoughts and hoping to contribute effectively to this amazing project!