|
| 1 | + |
| 2 | + [1X3 [33X[0;0YQuivers and special biserial algebras[133X[101X |
| 3 | + |
| 4 | + |
| 5 | + [1X3.1 [33X[0;0YIntroduction[133X[101X |
| 6 | + |
| 7 | + [33X[0;0YQuivers are finite directed graphs. Paths in a given quiver [22XQ[122X can be |
| 8 | + concatenated in an obvious way, and this concatenation can be extended |
| 9 | + [22XK[122X-linearly (over a field [22XK[122X) to give an associative, unital algebra [22XKQ[122X called |
| 10 | + a [13Xpath algebra[113X. A path algebra is infinite-dimensional iff its underlying |
| 11 | + quiver [22XQ[122X is acyclic. Finite-dimensional [13Xquiver algebras[113X -- that is, |
| 12 | + finite-dimensional quotient algebras [22XKQ/I[122X of a path algebra [22XKQ[122X by some |
| 13 | + (frequently admissible) ideal [22XI[122X -- are a very important class of rings, |
| 14 | + whose representation theory has been much studied.[133X |
| 15 | + |
| 16 | + [33X[0;0YThe excellent [5XQPA[105X package implements these objects in [5XGAP[105X. The (far more |
| 17 | + humdrum) [5XSBStrips[105X package extends [5XQPA[105X's functionality. Quivers constructed |
| 18 | + using the [5XQPA[105X function [2XQuiver[102X ([14XQPA: Quivers[114X) belong to the filter [2XIsQuiver[102X |
| 19 | + ([14XQPA: IsQuiver[114X), and special biserial algebras are those quiver algebras for |
| 20 | + which the property [2XIsSpecialBiserialAlgebra[102X ([14XQPA: IsSpecialBiserialAlgebra[114X) |
| 21 | + returns [9Xtrue[109X.[133X |
| 22 | + |
| 23 | + [33X[0;0YIn this section, we explain some added functionality for quivers and special |
| 24 | + biserial algebras.[133X |
| 25 | + |
| 26 | + |
| 27 | + [1X3.2 [33X[0;0YNew property of quivers[133X[101X |
| 28 | + |
| 29 | + [1X3.2-1 Is1RegQuiver[101X |
| 30 | + |
| 31 | + [33X[1;0Y[29X[2XIs1RegQuiver[102X( [3Xquiver[103X ) [32X property[133X |
| 32 | + |
| 33 | + [33X[0;0YArgument: [3Xquiver[103X, a quiver[133X |
| 34 | + |
| 35 | + [6XReturns:[106X [33X[0;10Yeither [10Xtrue[110X or [10Xfalse[110X, depending on whether or not [3Xquiver[103X is |
| 36 | + [22X1[122X-regular.[133X |
| 37 | + |
| 38 | + [1X3.2-2 IsOverquiver[101X |
| 39 | + |
| 40 | + [33X[1;0Y[29X[2XIsOverquiver[102X( [3Xquiver[103X ) [32X property[133X |
| 41 | + |
| 42 | + [33X[0;0YArgument: [3Xquiver[103X, a quiver[133X |
| 43 | + |
| 44 | + [6XReturns:[106X [33X[0;10Y[9Xtrue[109X if [3Xquiver[103X was constructed by [14X???DocOverquiverOfSbAlg???[114X, and |
| 45 | + [9Xfalse[109X otherwise.[133X |
| 46 | + |
| 47 | + |
| 48 | + [1X3.3 [33X[0;0YNew attributes of quivers[133X[101X |
| 49 | + |
| 50 | + [1X3.3-1 1RegQuivIntAct[101X |
| 51 | + |
| 52 | + [33X[1;0Y[29X[2X1RegQuivIntAct[102X( [3Xx[103X, [3Xk[103X ) [32X operation[133X |
| 53 | + |
| 54 | + [33X[0;0YArguments: [3Xx[103X, which is either a vertex or an arrow of a [22X1[122X-regular quiver; [3Xk[103X, |
| 55 | + an integer.[133X |
| 56 | + |
| 57 | + [6XReturns:[106X [33X[0;10Ythe path [22Xx+k[122X, as per the [22Xℤ[122X-action (see below).[133X |
| 58 | + |
| 59 | + [33X[0;0YRecall that a quiver is [22X1[122X-regular iff the source and target functions [22Xs,t[122X |
| 60 | + are bijections from the arrow set to the vertex set (in which case the |
| 61 | + inverse [22Xt^-1[122X is well-defined). The generator [22X1 ∈ ℤ[122X acts as ``[22Xt^-1[122X then [22Xs[122X'' |
| 62 | + on vertices and ``[22Xs[122X then [22Xt^-1[122X'' on arrows.[133X |
| 63 | + [33X[0;0YThis operation figures out from [3Xx[103X the quiver to which [3Xx[103X belongs and applies |
| 64 | + [2X1RegQuivIntActionFunction[102X ([14X3.3-2[114X) of tha quiver. For this reason, it is more |
| 65 | + user-friendly.[133X |
| 66 | + |
| 67 | + [1X3.3-2 1RegQuivIntActionFunction[101X |
| 68 | + |
| 69 | + [33X[1;0Y[29X[2X1RegQuivIntActionFunction[102X( [3Xquiver[103X ) [32X attribute[133X |
| 70 | + |
| 71 | + [33X[0;0YArgument: [3Xquiver[103X, a [22X1[122X-regular quiver (as tested by [2XIs1RegQuiver[102X ([14X3.2-1[114X))[133X |
| 72 | + |
| 73 | + [6XReturns:[106X [33X[0;10Ya single function [10Xf[110X describing the [22Xℤ[122X-actions on the vertices and |
| 74 | + the arrows of [3Xquiver[103X[133X |
| 75 | + |
| 76 | + [33X[0;0YRecall that a quiver is [22X1[122X-regular iff the source and target functions [22Xs,t[122X |
| 77 | + are bijections from the arrow set to the vertex set (in which case the |
| 78 | + inverse [22Xt^-1[122X is well-defined). The generator [22X1 ∈ ℤ[122X acts as ``[22Xt^-1[122X then [22Xs[122X'' |
| 79 | + on vertices and ``[22Xs[122X then [22Xt^-1[122X'' on arrows.[133X |
| 80 | + [33X[0;0YIn practice you will probably want to use [2X1RegQuivIntAct[102X ([14X3.3-1[114X), since it |
| 81 | + saves you having to remind [5XSBStrips[105X which quiver you intend to act on.[133X |
| 82 | + |
| 83 | + [1X3.3-3 2RegAugmentationOfQuiver[101X |
| 84 | + |
| 85 | + [33X[1;0Y[29X[2X2RegAugmentationOfQuiver[102X( [3Xground_quiv[103X ) [32X attribute[133X |
| 86 | + |
| 87 | + [33X[0;0YArgument: [3Xground_quiv[103X, a sub[22X2[122X-regular quiver (as tested by |
| 88 | + [2XIsSpecialBiserialQuiver[102X ([14XQPA: IsSpecialBiserialQuiver[114X))[133X |
| 89 | + |
| 90 | + [6XReturns:[106X [33X[0;10Ya [22X2[122X-regular quiver of which [3Xground_quiv[103X may naturally be seen as a |
| 91 | + subquiver[133X |
| 92 | + |
| 93 | + [33X[0;0YIf [3Xground_quiv[103X is itself sub-[22X2[122X-regular, then this attribute returns |
| 94 | + [3Xground_quiv[103X identically. If not, then this attribute constructs a brand new |
| 95 | + quiver object which has vertices and arrows having the same names as those |
| 96 | + of [3Xground_quiv[103X, but also has arrows with names [10Xaugarr1[110X, [10Xaugarr2[110X and so on.[133X |
| 97 | + |
| 98 | + |
| 99 | + [1X3.4 [33X[0;0YOperations on vertices and arrows of quivers[133X[101X |
| 100 | + |
| 101 | + [1X3.4-1 1RegQuivIntAct[101X |
| 102 | + |
| 103 | + [33X[1;0Y[29X[2X1RegQuivIntAct[102X( [3Xx[103X, [3Xk[103X ) [32X operation[133X |
| 104 | + |
| 105 | + [33X[0;0YArguments: [3Xx[103X, which is either a vertex or an arrow of a [22X1[122X-regular quiver; [3Xk[103X, |
| 106 | + an integer.[133X |
| 107 | + |
| 108 | + [6XReturns:[106X [33X[0;10Ythe path [22Xx+k[122X, as per the [22Xℤ[122X-action (see below).[133X |
| 109 | + |
| 110 | + [33X[0;0YRecall that a quiver is [22X1[122X-regular iff the source and target functions [22Xs,t[122X |
| 111 | + are bijections from the arrow set to the vertex set (in which case the |
| 112 | + inverse [22Xt^-1[122X is well-defined). The generator [22X1 ∈ ℤ[122X acts as ``[22Xt^-1[122X then [22Xs[122X'' |
| 113 | + on vertices and ``[22Xs[122X then [22Xt^-1[122X'' on arrows.[133X |
| 114 | + [33X[0;0YThis operation figures out from [3Xx[103X the quiver to which [3Xx[103X belongs and applies |
| 115 | + [2X1RegQuivIntActionFunction[102X ([14X3.3-2[114X) of tha quiver. For this reason, it is more |
| 116 | + user-friendly.[133X |
| 117 | + |
| 118 | + [1X3.4-2 PathBySourceAndLength[101X |
| 119 | + |
| 120 | + [33X[1;0Y[29X[2XPathBySourceAndLength[102X( [3Xvert[103X, [3Xlen[103X ) [32X operation[133X |
| 121 | + |
| 122 | + [33X[0;0YArguments: [3Xvert[103X, a vertex of a [22X1[122X-regular quiver [22XQ[122X; [3Xlen[103X, a nonnegative |
| 123 | + integer.[133X |
| 124 | + |
| 125 | + [6XReturns:[106X [33X[0;10Ythe unique path in [22XQ[122X which has source [3Xvert[103X and length [3Xlen[103X.[133X |
| 126 | + |
| 127 | + [1X3.4-3 PathByTargetAndLength[101X |
| 128 | + |
| 129 | + [33X[1;0Y[29X[2XPathByTargetAndLength[102X( [3Xvert[103X, [3Xlen[103X ) [32X operation[133X |
| 130 | + |
| 131 | + [33X[0;0YArguments: [3Xvert[103X, a vertex of a [22X1[122X-regular quiver [22XQ[122X; [3Xlen[103X, a nonnegative |
| 132 | + integer.[133X |
| 133 | + |
| 134 | + [6XReturns:[106X [33X[0;10Ythe unique path in [22XQ[122X which has target [3Xvert[103X and length [3Xlen[103X.[133X |
| 135 | + |
| 136 | + |
| 137 | + [1X3.5 [33X[0;0YNew attributes for special biserial algebras[133X[101X |
| 138 | + |
| 139 | + [1X3.5-1 OverquiverOfSbAlg[101X |
| 140 | + |
| 141 | + [33X[1;0Y[29X[2XOverquiverOfSbAlg[102X( [3Xsba[103X ) [32X attribute[133X |
| 142 | + |
| 143 | + [33X[0;0YArgument: [3Xsba[103X, a special biserial algebra[133X |
| 144 | + |
| 145 | + [6XReturns:[106X [33X[0;10Ya quiver [10Xoquiv[110X with which uniserial [3Xsba[103X-modules can be |
| 146 | + conveniently (and unambiguously) represented.[133X |
| 147 | + |
| 148 | + [1X3.5-2 SimpleStripsOfSbAlg[101X |
| 149 | + |
| 150 | + [33X[1;0Y[29X[2XSimpleStripsOfSbAlg[102X( [3Xsba[103X ) [32X attribute[133X |
| 151 | + |
| 152 | + [33X[0;0YArgument: [3Xsba[103X, a special biserial algebra (ie, [2XIsSpecialBiserialAlgebra[102X |
| 153 | + ([14XQPA: IsSpecialBiserialAlgebra[114X) returs [9Xtrue[109X)[133X |
| 154 | + |
| 155 | + [6XReturns:[106X [33X[0;10Ya list [10Xsimple_list[110X, whose [22Xj[122Xth entry is the simple strip |
| 156 | + corresponding to the [22Xj[122Xth vertex of [3Xsba[103X.[133X |
| 157 | + |
| 158 | + [33X[0;0YYou will have specified [3Xsba[103X to [5XGAP[105X via some quiver. The vertices of that |
| 159 | + quiver are ordered; [10XSimpleStripsOfSbAlg[110X adopts that order for strips of |
| 160 | + simple modules.[133X |
| 161 | + |
| 162 | + [1X3.5-3 ProjectiveStripsOfSbAlg[101X |
| 163 | + |
| 164 | + [33X[1;0Y[29X[2XProjectiveStripsOfSbAlg[102X( [3Xsba[103X ) [32X attribute[133X |
| 165 | + |
| 166 | + [33X[0;0YArgument: [3Xsba[103X, a special biserial algebra (ie, [2XIsSpecialBiserialAlgebra[102X |
| 167 | + ([14XQPA: IsSpecialBiserialAlgebra[114X) returs [9Xtrue[109X)[133X |
| 168 | + |
| 169 | + [6XReturns:[106X [33X[0;10Ya list [10Xproj_list[110X, whose entry are either strips or the boolean |
| 170 | + [9Xfail[109X.[133X |
| 171 | + |
| 172 | + [33X[0;0YYou will have specified [3Xsba[103X to [5XGAP[105X via some quiver. The vertices of that |
| 173 | + quiver are ordered; [10XProjectiveStripsOfSbAlg[110X adopts that order for strips of |
| 174 | + projective modules.[133X |
| 175 | + |
| 176 | + [33X[0;0YIf the projective module corresponding to the [10Xj[110Xth vertex of [3Xsba[103X is a string |
| 177 | + module, then [10XProjectiveStripsOfSbAlg( sba )[j][110X returns the strip describing |
| 178 | + that string module. If not, then it returns [9Xfail[109X.[133X |
| 179 | + |
| 180 | + [1X3.5-4 InjectiveStripsOfSbAlg[101X |
| 181 | + |
| 182 | + [33X[1;0Y[29X[2XInjectiveStripsOfSbAlg[102X( [3Xsba[103X ) [32X attribute[133X |
| 183 | + |
| 184 | + [33X[0;0YArgument: [3Xsba[103X, a special biserial algebra (ie, [2XIsSpecialBiserialAlgebra[102X |
| 185 | + ([14XQPA: IsSpecialBiserialAlgebra[114X) returs [9Xtrue[109X)[133X |
| 186 | + |
| 187 | + [6XReturns:[106X [33X[0;10Ya list [10Xinj_list[110X, whose entry are either strips or the boolean |
| 188 | + [9Xfail[109X.[133X |
| 189 | + |
| 190 | + [33X[0;0YYou will have specified [3Xsba[103X to [5XGAP[105X via some quiver. The vertices of that |
| 191 | + quiver are ordered; [10XInjectiveStripsOfSbAlg[110X adopts that order for strips of |
| 192 | + projective modules.[133X |
| 193 | + |
| 194 | + [33X[0;0YIf the injective module corresponding to the [10Xj[110Xth vertex of [3Xsba[103X is a string |
| 195 | + module, then [10XInjectiveStripsOfSbAlg( sba )[j][110X returns the strip describing |
| 196 | + that string module. If not, then it returns [9Xfail[109X.[133X |
| 197 | + |
| 198 | + |
| 199 | + [1X3.6 [33X[0;0YNew function for special biserial algebras[133X[101X |
| 200 | + |
| 201 | + [1X3.6-1 TestInjectiveStripsUpToNthSyzygy[101X |
| 202 | + |
| 203 | + [33X[1;0Y[29X[2XTestInjectiveStripsUpToNthSyzygy[102X( [3Xsba[103X, [3XN[103X ) [32X function[133X |
| 204 | + |
| 205 | + [33X[0;0YArguments: [3Xsba[103X a special biserial algebra (ie, [2XIsSpecialBiserialAlgebra[102X |
| 206 | + ([14XQPA: IsSpecialBiserialAlgebra[114X) returs [9Xtrue[109X); [3XN[103X, a positive integer[133X |
| 207 | + |
| 208 | + [6XReturns:[106X [33X[0;10Y[9Xtrue[109X, if all strips of injective string modules have finite syzygy |
| 209 | + type by the [3XN[103Xth syzygy, and [9Xfalse[109X otherwise.[133X |
| 210 | + |
| 211 | + [33X[0;0YThis function calls [2XInjectiveStripsOfSbAlg[102X ([14X3.5-4[114X) for [3Xsba[103X, filters out all |
| 212 | + the [9Xfail[109Xs, and then checks each remaining strip individually using |
| 213 | + [2XIsFiniteSyzygyTypeStripByNthSyzygy[102X ([14X7.4-1[114X) (with second argument [3XN[103X).[133X |
| 214 | + |
| 215 | + [33X[0;0Y[13XAuthor's note.[113X For every special biserial algebra I test, this function |
| 216 | + returns true for sufficiently large [3XN[103X. It suggests that the injective |
| 217 | + cogenerator of a SB algebra always has finite syzygy type. This condition |
| 218 | + implies many homological conditions of interest (including the big |
| 219 | + finitistic dimension conjecture)![133X |
| 220 | + |
0 commit comments