|
1 | 1 | ## Results
|
2 | 2 |
|
| 3 | +### zipformer (zipformer + pruned-transducer w/ CR-CTC) |
| 4 | + |
| 5 | +See <https://github.com/k2-fsa/icefall/pull/1766> for more details. |
| 6 | + |
| 7 | +[zipformer](./zipformer) |
| 8 | + |
| 9 | +#### Non-streaming |
| 10 | + |
| 11 | +##### large-scale model, number of model parameters: 148824074, i.e., 148.8 M |
| 12 | + |
| 13 | +You can find a pretrained model, training logs, decoding logs, and decoding results at: |
| 14 | +<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-transducer-with-CR-CTC-20241019> |
| 15 | + |
| 16 | +You can use <https://github.com/k2-fsa/sherpa> to deploy it. |
| 17 | + |
| 18 | +| decoding method | test-clean | test-other | comment | |
| 19 | +|--------------------------------------|------------|------------|---------------------| |
| 20 | +| greedy_search | 1.9 | 3.96 | --epoch 50 --avg 26 | |
| 21 | +| modified_beam_search | 1.88 | 3.95 | --epoch 50 --avg 26 | |
| 22 | + |
| 23 | +The training command using 2 80G-A100 GPUs is: |
| 24 | +```bash |
| 25 | +export CUDA_VISIBLE_DEVICES="0,1" |
| 26 | +# for non-streaming model training: |
| 27 | +./zipformer/train.py \ |
| 28 | + --world-size 2 \ |
| 29 | + --num-epochs 50 \ |
| 30 | + --start-epoch 1 \ |
| 31 | + --use-fp16 1 \ |
| 32 | + --exp-dir zipformer/exp-large-cr-ctc-rnnt \ |
| 33 | + --use-cr-ctc 1 \ |
| 34 | + --use-ctc 1 \ |
| 35 | + --use-transducer 1 \ |
| 36 | + --use-attention-decoder 0 \ |
| 37 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 38 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 39 | + --encoder-dim 192,256,512,768,512,256 \ |
| 40 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 41 | + --ctc-loss-scale 0.1 \ |
| 42 | + --enable-spec-aug 0 \ |
| 43 | + --cr-loss-scale 0.02 \ |
| 44 | + --time-mask-ratio 2.5 \ |
| 45 | + --full-libri 1 \ |
| 46 | + --max-duration 1400 \ |
| 47 | + --master-port 12345 |
| 48 | +``` |
| 49 | + |
| 50 | +The decoding command is: |
| 51 | +```bash |
| 52 | +export CUDA_VISIBLE_DEVICES="0" |
| 53 | +for m in greedy_search modified_beam_search; do |
| 54 | + ./zipformer/decode.py \ |
| 55 | + --epoch 50 \ |
| 56 | + --avg 26 \ |
| 57 | + --exp-dir zipformer/exp-large-cr-ctc-rnnt \ |
| 58 | + --use-cr-ctc 1 \ |
| 59 | + --use-ctc 1 \ |
| 60 | + --use-transducer 1 \ |
| 61 | + --use-attention-decoder 0 \ |
| 62 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 63 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 64 | + --encoder-dim 192,256,512,768,512,256 \ |
| 65 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 66 | + --max-duration 300 \ |
| 67 | + --decoding-method $m |
| 68 | +done |
| 69 | +``` |
| 70 | + |
| 71 | +### zipformer (zipformer + CR-CTC-AED) |
| 72 | + |
| 73 | +See <https://github.com/k2-fsa/icefall/pull/1766> for more details. |
| 74 | + |
| 75 | +[zipformer](./zipformer) |
| 76 | + |
| 77 | +#### Non-streaming |
| 78 | + |
| 79 | +##### large-scale model, number of model parameters: 174319650, i.e., 174.3 M |
| 80 | + |
| 81 | +You can find a pretrained model, training logs, decoding logs, and decoding results at: |
| 82 | +<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-cr-ctc-aed-20241020> |
| 83 | + |
| 84 | +You can use <https://github.com/k2-fsa/sherpa> to deploy it. |
| 85 | + |
| 86 | +| decoding method | test-clean | test-other | comment | |
| 87 | +|--------------------------------------|------------|------------|---------------------| |
| 88 | +| attention-decoder-rescoring-no-ngram | 1.96 | 4.08 | --epoch 50 --avg 20 | |
| 89 | + |
| 90 | +The training command using 2 80G-A100 GPUs is: |
| 91 | +```bash |
| 92 | +export CUDA_VISIBLE_DEVICES="0,1" |
| 93 | +# for non-streaming model training: |
| 94 | +./zipformer/train.py \ |
| 95 | + --world-size 2 \ |
| 96 | + --num-epochs 50 \ |
| 97 | + --start-epoch 1 \ |
| 98 | + --use-fp16 1 \ |
| 99 | + --exp-dir zipformer/exp-large-cr-ctc-aed \ |
| 100 | + --use-cr-ctc 1 \ |
| 101 | + --use-ctc 1 \ |
| 102 | + --use-transducer 0 \ |
| 103 | + --use-attention-decoder 1 \ |
| 104 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 105 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 106 | + --encoder-dim 192,256,512,768,512,256 \ |
| 107 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 108 | + --ctc-loss-scale 0.1 \ |
| 109 | + --attention-decoder-loss-scale 0.9 \ |
| 110 | + --enable-spec-aug 0 \ |
| 111 | + --cr-loss-scale 0.02 \ |
| 112 | + --time-mask-ratio 2.5 \ |
| 113 | + --full-libri 1 \ |
| 114 | + --max-duration 1200 \ |
| 115 | + --master-port 12345 |
| 116 | +``` |
| 117 | + |
| 118 | +The decoding command is: |
| 119 | +```bash |
| 120 | +export CUDA_VISIBLE_DEVICES="0" |
| 121 | +./zipformer/ctc_decode.py \ |
| 122 | + --epoch 50 \ |
| 123 | + --avg 20 \ |
| 124 | + --exp-dir zipformer/exp-large-cr-ctc-aed/ \ |
| 125 | + --use-cr-ctc 1 \ |
| 126 | + --use-ctc 1 \ |
| 127 | + --use-transducer 0 \ |
| 128 | + --use-attention-decoder 1 \ |
| 129 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 130 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 131 | + --encoder-dim 192,256,512,768,512,256 \ |
| 132 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 133 | + --max-duration 200 \ |
| 134 | + --decoding-method attention-decoder-rescoring-no-ngram |
| 135 | +done |
| 136 | +``` |
| 137 | + |
| 138 | +### zipformer (zipformer + CR-CTC) |
| 139 | + |
| 140 | +See <https://github.com/k2-fsa/icefall/pull/1766> for more details. |
| 141 | + |
| 142 | +[zipformer](./zipformer) |
| 143 | + |
| 144 | +#### Non-streaming |
| 145 | + |
| 146 | +##### small-scale model, number of model parameters: 22118279, i.e., 22.1 M |
| 147 | + |
| 148 | +You can find a pretrained model, training logs, decoding logs, and decoding results at: |
| 149 | +<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-small-cr-ctc-20241018> |
| 150 | + |
| 151 | +You can use <https://github.com/k2-fsa/sherpa> to deploy it. |
| 152 | + |
| 153 | +| decoding method | test-clean | test-other | comment | |
| 154 | +|--------------------------------------|------------|------------|---------------------| |
| 155 | +| ctc-greedy-decoding | 2.57 | 5.95 | --epoch 50 --avg 25 | |
| 156 | + |
| 157 | +The training command using 2 32G-V100 GPUs is: |
| 158 | +```bash |
| 159 | +export CUDA_VISIBLE_DEVICES="0,1" |
| 160 | +# for non-streaming model training: |
| 161 | +./zipformer/train.py \ |
| 162 | + --world-size 2 \ |
| 163 | + --num-epochs 50 \ |
| 164 | + --start-epoch 1 \ |
| 165 | + --use-fp16 1 \ |
| 166 | + --exp-dir zipformer/exp-small/ \ |
| 167 | + --use-cr-ctc 1 \ |
| 168 | + --use-ctc 1 \ |
| 169 | + --use-transducer 0 \ |
| 170 | + --use-attention-decoder 0 \ |
| 171 | + --num-encoder-layers 2,2,2,2,2,2 \ |
| 172 | + --feedforward-dim 512,768,768,768,768,768 \ |
| 173 | + --encoder-dim 192,256,256,256,256,256 \ |
| 174 | + --encoder-unmasked-dim 192,192,192,192,192,192 \ |
| 175 | + --base-lr 0.04 \ |
| 176 | + --enable-spec-aug 0 \ |
| 177 | + --cr-loss-scale 0.2 \ |
| 178 | + --time-mask-ratio 2.5 \ |
| 179 | + --full-libri 1 \ |
| 180 | + --max-duration 850 \ |
| 181 | + --master-port 12345 |
| 182 | +``` |
| 183 | + |
| 184 | +The decoding command is: |
| 185 | +```bash |
| 186 | +export CUDA_VISIBLE_DEVICES="0" |
| 187 | +for m in ctc-greedy-search; do |
| 188 | + ./zipformer/ctc_decode.py \ |
| 189 | + --epoch 50 \ |
| 190 | + --avg 25 \ |
| 191 | + --exp-dir zipformer/exp-small \ |
| 192 | + --use-cr-ctc 1 \ |
| 193 | + --use-ctc 1 \ |
| 194 | + --use-transducer 0 \ |
| 195 | + --use-attention-decoder 0 \ |
| 196 | + --num-encoder-layers 2,2,2,2,2,2 \ |
| 197 | + --feedforward-dim 512,768,768,768,768,768 \ |
| 198 | + --encoder-dim 192,256,256,256,256,256 \ |
| 199 | + --encoder-unmasked-dim 192,192,192,192,192,192 \ |
| 200 | + --max-duration 600 \ |
| 201 | + --decoding-method $m |
| 202 | +done |
| 203 | +``` |
| 204 | + |
| 205 | +##### medium-scale model, number of model parameters: 64250603, i.e., 64.3 M |
| 206 | + |
| 207 | +You can find a pretrained model, training logs, decoding logs, and decoding results at: |
| 208 | +<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-medium-cr-ctc-20241018> |
| 209 | + |
| 210 | +You can use <https://github.com/k2-fsa/sherpa> to deploy it. |
| 211 | + |
| 212 | +| decoding method | test-clean | test-other | comment | |
| 213 | +|--------------------------------------|------------|------------|---------------------| |
| 214 | +| ctc-greedy-decoding | 2.12 | 4.62 | --epoch 50 --avg 24 | |
| 215 | + |
| 216 | +The training command using 4 32G-V100 GPUs is: |
| 217 | +```bash |
| 218 | +export CUDA_VISIBLE_DEVICES="0,1,2,3" |
| 219 | +# For non-streaming model training: |
| 220 | +./zipformer/train.py \ |
| 221 | + --world-size 4 \ |
| 222 | + --num-epochs 50 \ |
| 223 | + --start-epoch 1 \ |
| 224 | + --use-fp16 1 \ |
| 225 | + --exp-dir zipformer/exp \ |
| 226 | + --use-cr-ctc 1 \ |
| 227 | + --use-ctc 1 \ |
| 228 | + --use-transducer 0 \ |
| 229 | + --use-attention-decoder 0 \ |
| 230 | + --enable-spec-aug 0 \ |
| 231 | + --cr-loss-scale 0.2 \ |
| 232 | + --time-mask-ratio 2.5 \ |
| 233 | + --full-libri 1 \ |
| 234 | + --max-duration 700 \ |
| 235 | + --master-port 12345 |
| 236 | +``` |
| 237 | + |
| 238 | +The decoding command is: |
| 239 | +```bash |
| 240 | +export CUDA_VISIBLE_DEVICES="0" |
| 241 | +for m in ctc-greedy-search; do |
| 242 | + ./zipformer/ctc_decode.py \ |
| 243 | + --epoch 50 \ |
| 244 | + --avg 24 \ |
| 245 | + --exp-dir zipformer/exp \ |
| 246 | + --use-cr-ctc 1 \ |
| 247 | + --use-ctc 1 \ |
| 248 | + --use-transducer 0 \ |
| 249 | + --use-attention-decoder 0 \ |
| 250 | + --max-duration 600 \ |
| 251 | + --decoding-method $m |
| 252 | +done |
| 253 | +``` |
| 254 | + |
| 255 | +##### large-scale model, number of model parameters: 147010094, i.e., 147.0 M |
| 256 | + |
| 257 | +You can find a pretrained model, training logs, decoding logs, and decoding results at: |
| 258 | +<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-cr-ctc-20241018> |
| 259 | + |
| 260 | +You can use <https://github.com/k2-fsa/sherpa> to deploy it. |
| 261 | + |
| 262 | +| decoding method | test-clean | test-other | comment | |
| 263 | +|--------------------------------------|------------|------------|---------------------| |
| 264 | +| ctc-greedy-decoding | 2.03 | 4.37 | --epoch 50 --avg 26 | |
| 265 | + |
| 266 | +The training command using 2 80G-A100 GPUs is: |
| 267 | +```bash |
| 268 | +export CUDA_VISIBLE_DEVICES="0,1" |
| 269 | +# For non-streaming model training: |
| 270 | +./zipformer/train.py \ |
| 271 | + --world-size 2 \ |
| 272 | + --num-epochs 50 \ |
| 273 | + --start-epoch 1 \ |
| 274 | + --use-fp16 1 \ |
| 275 | + --exp-dir zipformer/exp-large \ |
| 276 | + --use-cr-ctc 1 \ |
| 277 | + --use-ctc 1 \ |
| 278 | + --use-transducer 0 \ |
| 279 | + --use-attention-decoder 0 \ |
| 280 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 281 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 282 | + --encoder-dim 192,256,512,768,512,256 \ |
| 283 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 284 | + --enable-spec-aug 0 \ |
| 285 | + --cr-loss-scale 0.2 \ |
| 286 | + --time-mask-ratio 2.5 \ |
| 287 | + --full-libri 1 \ |
| 288 | + --max-duration 1400 \ |
| 289 | + --master-port 12345 |
| 290 | +``` |
| 291 | + |
| 292 | +The decoding command is: |
| 293 | +```bash |
| 294 | +export CUDA_VISIBLE_DEVICES="0" |
| 295 | +for m in ctc-greedy-search; do |
| 296 | + ./zipformer/ctc_decode.py \ |
| 297 | + --epoch 50 \ |
| 298 | + --avg 26 \ |
| 299 | + --exp-dir zipformer/exp-large \ |
| 300 | + --use-cr-ctc 1 \ |
| 301 | + --use-ctc 1 \ |
| 302 | + --use-transducer 0 \ |
| 303 | + --use-attention-decoder 0 \ |
| 304 | + --num-encoder-layers 2,2,4,5,4,2 \ |
| 305 | + --feedforward-dim 512,768,1536,2048,1536,768 \ |
| 306 | + --encoder-dim 192,256,512,768,512,256 \ |
| 307 | + --encoder-unmasked-dim 192,192,256,320,256,192 \ |
| 308 | + --max-duration 600 \ |
| 309 | + --decoding-method $m |
| 310 | +done |
| 311 | +``` |
| 312 | + |
3 | 313 | ### zipformer (zipformer + CTC/AED)
|
4 | 314 |
|
5 | 315 | See <https://github.com/k2-fsa/icefall/pull/1389> for more details.
|
|
0 commit comments