-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
80 lines (63 loc) · 2.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, log_loss
import xgboost as xgb
import matplotlib as mpl
import mlflow
import mlflow.xgboost
mpl.use("Agg")
def parse_args():
parser = argparse.ArgumentParser(description="XGBoost example")
parser.add_argument(
"--learning-rate",
type=float,
default=0.3,
help="learning rate to update step size at each boosting step (default: 0.3)",
)
parser.add_argument(
"--colsample-bytree",
type=float,
default=1.0,
help="subsample ratio of columns when constructing each tree (default: 1.0)",
)
parser.add_argument(
"--subsample",
type=float,
default=1.0,
help="subsample ratio of the training instances (default: 1.0)",
)
return parser.parse_args()
def main():
# parse command-line arguments
args = parse_args()
# prepare train and test data
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# enable auto logging
mlflow.xgboost.autolog()
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
with mlflow.start_run():
# train model
params = {
"objective": "multi:softprob",
"num_class": 3,
"learning_rate": args.learning_rate,
"eval_metric": "mlogloss",
"colsample_bytree": args.colsample_bytree,
"subsample": args.subsample,
"seed": 42,
}
model = xgb.train(params, dtrain, evals=[(dtrain, "train")])
# evaluate model
y_proba = model.predict(dtest)
y_pred = y_proba.argmax(axis=1)
loss = log_loss(y_test, y_proba)
acc = accuracy_score(y_test, y_pred)
# log metrics
mlflow.log_metrics({"log_loss": loss, "accuracy": acc})
if __name__ == "__main__":
main()