This is the Official Pytorch-Lightning implementation of the paper: "Cascading Hierarchical Networks with Multi-task Balanced Loss for Fine-grained hashing"(https://arxiv.org/abs/2303.11274).
- Python3
- PyTorch
- PyTorch-Lightning
- Numpy
- pandas
We use the following 5 datasets: CUB200-2011, Aircraft, VegFru, NABirds and Food101.
- The running commands for several datasets are shown below.
python main.py --dataset cub --gpu 0, --batch_size=128 --code_length=32 --num_workers=4 --lr 0.008
python main.py --dataset aircraft --gpu 0, --batch_size=32 --code_length=32 --num_workers=4 --lr 0.035
python main.py --dataset vegfru --gpu 0, --batch_size=128 --code_length=32 --num_workers=4 --lr 0.005
python main.py --dataset nabirds --gpu 0, --batch_size=128 --code_length=32 --num_workers=4 --lr 0.008
python main.py --dataset food101 --gpu 0, --batch_size=128 --code_length=32 --num_workers=4 --lr 0.008
If you find our work inspiring or use our codebase in your research, please cite our work.
@misc{zeng2023cascading,
title={Cascading Hierarchical Networks with Multi-task Balanced Loss for Fine-grained hashing},
author={Xianxian Zeng and Yanjun Zheng},
year={2023},
eprint={2303.11274},
archivePrefix={arXiv},
primaryClass={cs.CV}
}