-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAutoencoder_encapsulate.py
243 lines (222 loc) · 9.28 KB
/
Autoencoder_encapsulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
encapsulated class AE
"""
import numpy as np
import pandas as pd
from keras import Model, Sequential
from keras.callbacks import EarlyStopping
from keras.layers import Dense, LeakyReLU
from keras.losses import MeanSquaredError
from keras.optimizers import Nadam
from matplotlib import pyplot as plt
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from statsmodels.regression.linear_model import OLS
from helper import normalization, price_impact, transaction_cost, reshape_cab, ex_post_return
class Autoencoder(Model):
def __init__(self, latent_dim):
super(Autoencoder, self).__init__()
self.latent_dim = latent_dim
self.encoder = Sequential([
Dense(latent_dim, input_dim=22, use_bias=False),
LeakyReLU(alpha=.2)
])
self.decoder = Sequential([
Dense(22, input_dim=latent_dim, use_bias=False),
LeakyReLU(alpha=.2)
])
def call(self, x, **kwargs):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
class AE:
def __init__(self, x_train, y_train, x_test, y_test, latent_dim):
'''
data needs to be unscaled.
:param x_train:
:param y_train:
:param x_test:
:param y_test:
:param latent_dim:
'''
self.reshape_strat_weight_on_etf = None
self.window = None
self.strat_weight_on_etf = None
self.hfd = None
self.rf = None
self.hfd_fullname = None
self._ante = None
self.OOS_hfd = None
self.OOS_etf = None
self.OOS_rf = None
self.test_scale = None
assert len(x_train) == len(y_train) and len(y_test) == len(x_test)
self.history = None
self.autoencoder = None
self.train_scale = MinMaxScaler()
# self.test_scale = MinMaxScaler()
self._x_train = self.train_scale.fit_transform(x_train)
# self._x_test = self.test_scale.fit_transform(x_test)
self._x_test = x_test
self._y_train = y_train
self._y_test = y_test
self._latent_dim = latent_dim
def train(self, patience=5, verbose=2, plot=True):
'''
AE training will only use self._x_train
:return: plot
'''
self.autoencoder = Autoencoder(self._latent_dim)
self.autoencoder.compile(
optimizer=Nadam(),
loss=MeanSquaredError()
)
self.history = self.autoencoder.fit(
self._x_train,
self._x_train,
epochs=1000,
verbose=verbose,
batch_size=48,
validation_split=.25,
callbacks=[EarlyStopping(
monitor='val_loss',
patience=patience,
mode='auto'
)
]
)
if plot:
print(self.autoencoder.summary())
plt.plot(self.history.history['loss'])
plt.plot(self.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
def model_IS_r2(self):
x_pred = self.autoencoder.predict(self._x_train, verbose=0)
return r2_score(self._x_train, x_pred)
def model_IS_RMSE(self):
x_pred = self.autoencoder.predict(self._x_train, verbose=0)
return mean_squared_error(self._x_train, x_pred, squared=False)
def model_OOS_r2(self):
seq = []
for i in range(2, len(self._x_test)):
scaler = MinMaxScaler()
x_real = scaler.fit_transform(self._x_test[:i])
x_pred = self.autoencoder.predict(x_real, verbose=0)
seq.append(r2_score(x_real, x_pred))
return seq
def model_OOS_RMSE(self):
seq = []
for i in range(2, len(self._x_test)):
scaler = MinMaxScaler()
x_real = scaler.fit_transform(self._x_test[:i])
x_pred = self.autoencoder.predict(x_real, verbose=0)
seq.append(mean_squared_error(x_real, x_pred, squared=False))
return seq
def ante(self, rf, hfd, window=24, ):
'''
calculate ex-ante and ex-post return
:return: ex-ante, ex-post
'''
assert isinstance(rf, pd.DataFrame)
# extract main factor
main_factor = self.autoencoder.encoder.predict(self._x_test, verbose=0)
# OLS beta calculation
# rolling window OLS window=24, consistent with the benchmark
window = window
start, end = 0, window
ae_ols_beta = []
normalization_factor = []
for i in range(len(self._x_test) - window):
X = main_factor[start:end]
Y = self._y_test[start: end]
beta = OLS(Y, X).fit().params
ae_ols_beta.append(beta)
# still need normalization factor.
normalization_factor.append(normalization(Y, X, beta, window))
start += 1
end += 1
# extract real weights on ETF
factor_weight_on_etf = self.autoencoder.decoder.get_weights()[0]
strat_weight_on_etf = []
delta_weight = []
for i in range(len(ae_ols_beta)):
leakyrelu_weight = np.ones(factor_weight_on_etf.shape[1])
for idx, val in enumerate(main_factor[window + i] @ factor_weight_on_etf):
if val < 0:
leakyrelu_weight[idx] = 0.2
strat_weight = (ae_ols_beta[0].T @ factor_weight_on_etf * leakyrelu_weight).T * normalization_factor[0]
delta_weight.append(1 - np.sum(strat_weight, axis=0))
strat_weight_on_etf.append(strat_weight)
'''
we are using insample ols to predict next step weighting on etf.
insample: 0-12, generate ols beta,
predict: out-sample lambda = in-sample beta,
predict_return: t=13, rf * (1-sum(lambda))+lambda * etf_return
therefore the last window in variable strat_weight_on_etf is invalid (no corresponding etf)
'''
# remove last element of weight and pop
strat_weight_on_etf.pop()
delta_weight.pop()
# OOS ETF is x_test, OOS hfd is y_test
self.OOS_etf = np.array(self._x_test.iloc[-len(strat_weight_on_etf):])
self.OOS_hfd = self._y_test.iloc[-len(strat_weight_on_etf):]
self.OOS_rf = np.array(rf.iloc[-len(strat_weight_on_etf):])
# calculate ante return
ae_ret_ante = []
for idx, strat_weight in enumerate(strat_weight_on_etf):
ret_ante = delta_weight[idx] * self.OOS_rf[idx] + np.sum(self.OOS_etf[idx] * strat_weight.T, axis=1)
ae_ret_ante.append(ret_ante)
ae_ret_ante = pd.DataFrame(ae_ret_ante)
ae_ret_ante.columns = hfd.columns
ae_ret_ante.index = hfd.index[-len(ae_ret_ante):]
# capture result
self._ante = ae_ret_ante
self.rf = rf
self.hfd = hfd
self.strat_weight_on_etf = strat_weight_on_etf
self.reshape_strat_weight_on_etf = reshape_cab(strat_weight_on_etf)
self.window = window
return self._ante
def post(self,factor_etf_data):
if self._ante is None:
raise Exception('please execute ante before turnover')
OOS_factor_etf = (factor_etf_data.iloc[-len(self.reshape_strat_weight_on_etf[0]) - self.window:]) # include the first window
self._post = ex_post_return(self._ante,self.window,self.reshape_strat_weight_on_etf,OOS_factor_etf)
return self._post
def turnover(self, hfd_fullname):
if self._ante is None:
raise Exception('please execute ante before turnover')
turnover = np.zeros(len(self.hfd.columns))
for i in range(len(self.strat_weight_on_etf) - 1):
turnover += np.sum(abs(self.strat_weight_on_etf[i] - self.strat_weight_on_etf[1 + i]), axis=0)
turnover /= len(self.strat_weight_on_etf)/12
turnover_df = []
for i in range(len(turnover)):
turnover_df.append([list(hfd_fullname.values())[i], turnover[i]])
turnover_df = pd.DataFrame(turnover_df, columns=['Real_AE', 'Turnover'])
turnover_df = turnover_df.set_index('Real_AE')
# assign input
self.hfd_fullname = hfd_fullname
return turnover_df
def plot(self,hfd_fullname,title=None):
assert isinstance(title, str)
fig, ax = plt.subplots(5, 3, figsize=(30, 20))
row, col = 0, 0
for idx, strat in enumerate(self._ante.columns):
temp = pd.DataFrame(
[self._ante.iloc[:, idx].cumsum(), self._post.iloc[:, idx].cumsum(), self.OOS_hfd.iloc[:, idx].cumsum()],
index=['Ex-ante', 'Ex_post', 'Real']).T
for i, name in enumerate(temp.columns):
ax[row][col].plot(temp.iloc[:, i], label=name)
ax[row][col].legend(loc="upper left")
ax[row][col].set_title(hfd_fullname[strat])
col += 1
if col % 3 == 0:
row += 1
col = 0
plt.suptitle(title, y=0.93, fontsize=24)
plt.show()