|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +# Copyright 2020 Mobvoi AI Lab, Beijing, China (author: Fangjun Kuang) |
| 4 | +# Apache 2.0 |
| 5 | + |
| 6 | +import os |
| 7 | +import logging |
| 8 | + |
| 9 | +import torch |
| 10 | +from torch.nn.utils.rnn import pad_sequence |
| 11 | +from torch.utils.data import DataLoader |
| 12 | +from torch.utils.data import Dataset |
| 13 | + |
| 14 | +import kaldi |
| 15 | + |
| 16 | + |
| 17 | +def get_ctc_dataloader(feats_scp, |
| 18 | + labels_scp=None, |
| 19 | + batch_size=1, |
| 20 | + shuffle=False, |
| 21 | + num_workers=0): |
| 22 | + |
| 23 | + dataset = CtcDataset(feats_scp=feats_scp, labels_scp=labels_scp) |
| 24 | + |
| 25 | + collate_fn = CtcDatasetCollateFunc() |
| 26 | + |
| 27 | + dataloader = DataLoader(dataset, |
| 28 | + batch_size=batch_size, |
| 29 | + shuffle=shuffle, |
| 30 | + num_workers=num_workers, |
| 31 | + collate_fn=collate_fn) |
| 32 | + |
| 33 | + return dataloader |
| 34 | + |
| 35 | + |
| 36 | +class CtcDataset(Dataset): |
| 37 | + |
| 38 | + def __init__(self, feats_scp, labels_scp=None): |
| 39 | + ''' |
| 40 | + Args: |
| 41 | + feats_scp: filename for feats.scp |
| 42 | + labels_scp: if provided, it is the filename of labels.scp |
| 43 | + ''' |
| 44 | + assert os.path.isfile(feats_scp) |
| 45 | + if labels_scp: |
| 46 | + assert os.path.isfile(labels_scp) |
| 47 | + logging.info('labels scp: {}'.format(labels_scp)) |
| 48 | + else: |
| 49 | + logging.warn('No labels scp is given.') |
| 50 | + |
| 51 | + # items is a dict of [uttid, feat_rxfilename, None] |
| 52 | + # or [uttid, feat_rxfilename, label_rxfilename] if labels_scp is not None |
| 53 | + items = dict() |
| 54 | + |
| 55 | + with open(feats_scp, 'r') as f: |
| 56 | + for line in f: |
| 57 | + # every line has the following format: |
| 58 | + # uttid feat_rxfilename |
| 59 | + uttid_rxfilename = line.split() |
| 60 | + assert len(uttid_rxfilename) == 2 |
| 61 | + |
| 62 | + uttid, rxfilename = uttid_rxfilename |
| 63 | + |
| 64 | + assert uttid not in items |
| 65 | + |
| 66 | + items[uttid] = [uttid, rxfilename, None] |
| 67 | + |
| 68 | + if labels_scp: |
| 69 | + expected_count = len(items) |
| 70 | + n = 0 |
| 71 | + with open(labels_scp, 'r') as f: |
| 72 | + for line in f: |
| 73 | + # every line has the following format: |
| 74 | + # uttid rxfilename |
| 75 | + uttid_rxfilename = line.split() |
| 76 | + |
| 77 | + assert len(uttid_rxfilename) == 2 |
| 78 | + |
| 79 | + uttid, rxfilename = uttid_rxfilename |
| 80 | + |
| 81 | + assert uttid in items |
| 82 | + |
| 83 | + items[uttid][-1] = rxfilename |
| 84 | + |
| 85 | + n += 1 |
| 86 | + |
| 87 | + # every utterance should have a label if |
| 88 | + # labels_scp is given |
| 89 | + assert n == expected_count |
| 90 | + |
| 91 | + self.items = list(items.values()) |
| 92 | + self.num_items = len(self.items) |
| 93 | + self.feats_scp = feats_scp |
| 94 | + self.labels_scp = labels_scp |
| 95 | + |
| 96 | + def __len__(self): |
| 97 | + return self.num_items |
| 98 | + |
| 99 | + def __getitem__(self, i): |
| 100 | + ''' |
| 101 | + Returns: |
| 102 | + a list [key, feat_rxfilename, label_rxfilename] |
| 103 | + Note that label_rxfilename may be None. |
| 104 | + ''' |
| 105 | + return self.items[i] |
| 106 | + |
| 107 | + def __str__(self): |
| 108 | + s = 'feats scp: {}\n'.format(self.feats_scp) |
| 109 | + |
| 110 | + if self.labels_scp: |
| 111 | + s += 'labels scp: {}\n'.format(self.labels_scp) |
| 112 | + |
| 113 | + s += 'num utterances: {}\n'.format(self.num_items) |
| 114 | + |
| 115 | + return s |
| 116 | + |
| 117 | + |
| 118 | +class CtcDatasetCollateFunc: |
| 119 | + |
| 120 | + def __call__(self, batch): |
| 121 | + ''' |
| 122 | + Args: |
| 123 | + batch: a list of [uttid, feat_rxfilename, label_rxfilename]. |
| 124 | + Note that label_rxfilename may be None. |
| 125 | +
|
| 126 | + Returns: |
| 127 | + uttid_list: a list of utterance id |
| 128 | +
|
| 129 | + feat: a 3-D float tensor of shape [batch_size, seq_len, feat_dim] |
| 130 | +
|
| 131 | + feat_len_list: number of frames of each utterance before padding |
| 132 | +
|
| 133 | + label_list: a list of labels of each utterance; It may be None. |
| 134 | +
|
| 135 | + label_len_list: label length of each utterance; It is None if label_list is None. |
| 136 | + ''' |
| 137 | + uttid_list = [] # utterance id of each utterance |
| 138 | + feat_len_list = [] # number of frames of each utterance |
| 139 | + label_list = [] # label of each utterance |
| 140 | + label_len_list = [] # label length of each utterance |
| 141 | + |
| 142 | + feat_list = [] |
| 143 | + |
| 144 | + for b in batch: |
| 145 | + uttid, feat_rxfilename, label_rxfilename = b |
| 146 | + |
| 147 | + uttid_list.append(uttid) |
| 148 | + |
| 149 | + feat = kaldi.read_mat(feat_rxfilename).numpy() |
| 150 | + feat = torch.from_numpy(feat).float() |
| 151 | + feat_list.append(feat) |
| 152 | + |
| 153 | + feat_len_list.append(feat.size(0)) |
| 154 | + |
| 155 | + if label_rxfilename: |
| 156 | + label = kaldi.read_vec_int(label_rxfilename) |
| 157 | + label_list.append(label) |
| 158 | + label_len_list.append(len(label)) |
| 159 | + |
| 160 | + feat = pad_sequence(feat_list, batch_first=True) |
| 161 | + |
| 162 | + if not label_list: |
| 163 | + label_list = None |
| 164 | + label_len_list = None |
| 165 | + |
| 166 | + return uttid_list, feat, feat_len_list, label_list, label_len_list |
| 167 | + |
| 168 | + |
| 169 | +def _test_dataset(): |
| 170 | + feats_scp = 'data/train_sp/feats.scp' |
| 171 | + labels_scp = 'data/train_sp/labels.scp' |
| 172 | + |
| 173 | + dataset = CtcDataset(feats_scp=feats_scp, labels_scp=labels_scp) |
| 174 | + |
| 175 | + print(dataset) |
| 176 | + |
| 177 | + |
| 178 | +def _test_dataloader(): |
| 179 | + feats_scp = 'data/test/feats.scp' |
| 180 | + labels_scp = 'data/test/labels.scp' |
| 181 | + |
| 182 | + dataset = CtcDataset(feats_scp=feats_scp, labels_scp=labels_scp) |
| 183 | + |
| 184 | + dataloader = DataLoader(dataset, |
| 185 | + batch_size=2, |
| 186 | + num_workers=10, |
| 187 | + shuffle=True, |
| 188 | + collate_fn=CtcDatasetCollateFunc()) |
| 189 | + i = 0 |
| 190 | + for batch in dataloader: |
| 191 | + uttid_list, feat, feat_len_list, label_list, label_len_list = batch |
| 192 | + print(uttid_list, feat.shape, feat_len_list, label_len_list) |
| 193 | + i += 1 |
| 194 | + if i > 10: |
| 195 | + break |
| 196 | + |
| 197 | + |
| 198 | +if __name__ == '__main__': |
| 199 | + # _test_dataset() |
| 200 | + _test_dataloader() |
0 commit comments