forked from visionml/pytracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvos_base.py
398 lines (314 loc) · 15.6 KB
/
vos_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import torch
from pathlib import Path
from collections import OrderedDict, defaultdict
import json
import numpy as np
import os
from .base_video_dataset import BaseVideoDataset
from ltr.data.image_loader import jpeg4py_loader, imread_indexed
from ltr.data.bounding_box_utils import masks_to_bboxes
class VOSMeta:
def __init__(self, data=None, filename=None):
if filename is not None:
self.load(filename)
elif data is not None:
self._data = data
else:
raise ValueError("Must set either data or filename parameter")
def save(self, gen_meta: Path):
gen_meta.parent.mkdir(exist_ok=True, parents=True)
json.dump(self._data, open(gen_meta, "w"))
def load(self, gen_meta: Path):
if not gen_meta.exists():
print("Generated metadata file %s is not found." % gen_meta)
print("Find and run VOSMeta.generate() to create it.")
raise FileNotFoundError(gen_meta)
self._data = json.load(open(gen_meta), object_pairs_hook=OrderedDict)
@classmethod
def generate(cls, dset_name: str, dset_images_path: Path, dset_annos_path: Path):
"""
Count the annotation mask pixels per object, per frame, in all sequences in a dataset
:param dset_name: Dataset name, for printing the progress bar.
:param dset_annos_path: Path to annotations directory, containing sequence directories,
with annotation frames in them.
:return: Dataset meta dict:
{'sequence0':
{
'shape': (height, width)
'obj_sizes': # Object pixels per frame
{'frame0': {'object0': px_count, 'object1': px_count, ...},
'frame1': {'object0': px_count, 'object1': px_count, ...},
... },
'bboxes': # Bounding boxes per frame
{'frame0': {'object0': bbox, 'object1': bbox, ...},
'frame1': {'object0': bbox, 'object1': bbox, ...},
... },
...
}
"""
assert(dset_annos_path.exists())
dset_meta = OrderedDict()
sequences = [p.stem for p in sorted(dset_annos_path.glob("*")) if p.is_dir()]
try:
from tqdm import tqdm
except:
def tqdm(x, *args, **kwargs):
return x
for seq in tqdm(sequences, desc=dset_name, unit="seq"):
obj_sizes2 = defaultdict(OrderedDict)
bboxes = defaultdict(OrderedDict)
shape = None
frame_names = [file.stem for file in sorted((dset_images_path / seq).glob("*.jpg"))]
anno_paths = list(sorted((dset_annos_path / seq).glob("*.png")))
# Extract information from the given label frames
for path in anno_paths:
f_id = path.stem
# Count label-pixels per frame
labels = imread_indexed(path)
# labels = np.array(Image.open(path))
obj_ids, obj_sizes = np.unique(labels, return_counts=True)
obj_ids = [str(oid) for oid in obj_ids]
obj_sizes = obj_sizes.tolist()
if '0' in obj_ids: # Remove background id
obj_ids = obj_ids[1:]
obj_sizes = obj_sizes[1:]
obj_sizes2[f_id] = OrderedDict(zip(obj_ids, obj_sizes))
# Generate per-label bounding boxes
for obj_id in obj_ids:
bboxes[f_id][obj_id] = cls._mask_to_bbox(labels == int(obj_id))
if shape is None:
shape = labels.shape[:2]
# Format result
dset_meta[seq] = dict(shape=shape, obj_sizes=obj_sizes2, bboxes=bboxes, frame_names=frame_names)
return VOSMeta(dset_meta)
@staticmethod
def _mask_to_bbox(mask: np.ndarray):
mask = mask.astype(int)
xs = mask.sum(axis=-2).nonzero()[0].tolist()
ys = mask.sum(axis=-1).nonzero()[0].tolist()
if len(ys) > 0 and len(xs) > 0:
x, y, w, h = xs[0], ys[0], xs[-1] - xs[0], ys[-1] - ys[0]
else:
x, y, w, h = 0, 0, 0, 0
return [x, y, w, h]
@staticmethod
def _transpose_nested_dict(d):
""" Permute a 2-level nested dict such that the inner and outer keys swap places. """
d2 = defaultdict(OrderedDict)
for key1, inner in d.items():
for key2, value in inner.items():
d2[key2][key1] = value
return d2
def select_split(self, dataset_name, split):
ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
sequences = set([s.strip() for s in open(os.path.join(ltr_path, 'data_specs', dataset_name + '_' + split + '.txt')).readlines()])
all_sequences = set(self._data.keys())
to_remove = all_sequences.difference(sequences)
for seq_name in to_remove:
self._data.pop(seq_name)
def get_sequence_names(self):
return list(self._data.keys())
def get_shape(self, seq_name):
""" Sequence image shape (h,w) """
h, w = self._data[seq_name]['shape']
return h, w
def get_obj_ids(self, seq_name):
""" All objects in the sequence """
return list(self.get_obj_sizes_per_object(seq_name).keys())
def get_frame_names(self, seq_name):
""" All filename stems of the frames in the sequence """
return self._data[seq_name]['frame_names']
def enable_all_frames(self, dset_images_path):
""" For YouTubeVOS: Update the frame names with (jpeg) files from the <split>_all_frames set
:param dset_images_path: /path/to/train_all_frames/JPEGImages (or valid or test)
:param seq: Sequence name
:return:
"""
# Try load the cached index
idx_file = dset_images_path.parent / "frame_names.json"
if idx_file.exists():
print('Loading cached frame names from %s' % idx_file)
all_frame_names = json.load(open(idx_file))
else:
# Cache the data to the user's home directory (guaranteed to be writable)
all_frame_names = dict()
user_idx_file = Path.home() / (dset_images_path.parent.stem + "_frame_names.json")
print('Indexing YouTubeVOS "all_frames" frame names to %s' % user_idx_file)
for seq in self._data:
all_frame_names[seq] = [file.stem for file in sorted((dset_images_path / seq).glob("*.jpg"))]
json.dump(all_frame_names, open(user_idx_file, "w"))
print('Done. Move %s to %s to load faster next time.' % (user_idx_file, idx_file))
for seq, frame_names in all_frame_names.items():
self._data[seq]['frame_names'] = frame_names
def get_aspect_ratio(self, seq_name):
""" Sequence aspect ratio """
h, w = self._data[seq_name]['shape']
return w / h
def get_obj_sizes_per_frame(self, seq_name):
""" Get object pixel counts, grouped by frame names """
return self._data[seq_name]['obj_sizes']
def get_bboxes_per_frame(self, seq_name):
""" Object bounding boxes, grouped by frame names """
return self._data[seq_name]['bboxes']
def get_obj_sizes_per_object(self, seq_name):
""" Object pixel counts, grouped by object """
return self._transpose_nested_dict(self.get_obj_sizes_per_frame(seq_name))
def get_bboxes_per_object(self, seq_name):
""" Object bounding boxes, grouped by object """
return self._transpose_nested_dict(self.get_bboxes_per_frame(seq_name))
@staticmethod
def generate_datasets_meta(src, dst=Path("~/vosdataset_meta").expanduser()):
VOSMeta.generate("SyntheticCoco", src / "JPEGImages", src / "Annotations").save(src / "generated_meta.json")
class VOSDatasetBase(BaseVideoDataset):
""" Generic VOS dataset reader base class, for both DAVIS and YouTubeVOS """
def __init__(self, name: str, root: Path, version=None, split='train',
multiobj=True, vis_threshold=10, image_loader=jpeg4py_loader):
"""
:param root: Dataset root path, eg /path/to/DAVIS or /path/to/YouTubeVOS/
Note: YouTubeVOS 2018 and 2019 are expected to be in
/path/to/YouTubeVOS/2018 and /path/to/YouTubeVOS/2019, respectively
:param name: 'DAVIS' or 'YouTubeVOS' (case sensitive)
:param version: DAVIS: '2016', '2017, YouTubeVOS: '2018' or '2019'
:param split: DAVIS: Any name in DAVIS/ImageSets/<year>,
YouTubeVOS: 'test', 'train', 'valid' or 'jjtrain', 'jjvalid'
:param multiobj: Whether the dataset will return all objects in a sequence or
multiple sequences with one object in each.
:param vis_threshold: Minimum number of pixels required to consider a target object "visible".
:param image_loader: Image loader.
"""
assert root.exists() and root.is_dir()
super().__init__(name, root, image_loader)
self.version = version
self.split = split
self.vis_threshold = vis_threshold
self.multiobj = multiobj
def _load_image(self, path):
im = self.image_loader(str(path))
assert im is not None
im = np.atleast_3d(im)
return im
@staticmethod
def _load_anno(path):
if not path.exists():
return None
# im = np.atleast_3d(np.array(Image.open(path)))
im = imread_indexed(path)
return im
def get_num_sequences(self):
return len(self._samples)
def get_sequence_info(self, sample_id):
""" Get sample meta data.
:param sample_id: Sample to query.
:return: dict of metadata:
sequence: Sequence name
frame_shape: (height, width) of the images
frame_names: List of frame filename stems in the sequence
object_ids: Id numbers of all objects occurring in the sequence
obj_sizes: Matrix shape=(frames, object) of the number of pixels for each object in each frame
Coordinates in this matrix relate to the frame_names and object_ids
visible: Boolean matrix of the same shape as obj_sizes. Entries with more pixels
than self.visible_threshold are True.
"""
m = self.gmeta
seq_name, obj_ids = self._samples[sample_id]
f_names = m.get_frame_names(seq_name) # All frames
f2i = {f: i for i, f in enumerate(f_names)} # Frame name to matrix index
o2i = {o: i for i, o in enumerate(obj_ids)} # Object id to matrix index
# Get a matrix of object sizes: shape=(frames, objects)
obj_sizes = torch.zeros((len(f_names), len(obj_ids)), dtype=torch.int)
sizes_per_object = m.get_obj_sizes_per_object(seq_name)
for obj_id in obj_ids:
frames = sizes_per_object[obj_id]
oid = o2i[obj_id]
for f, sz in frames.items():
obj_sizes[f2i[f], oid] = sz
visible = (obj_sizes > self.vis_threshold).byte()
return dict(sequence=seq_name, frame_shape=m.get_shape(seq_name), frame_names=f_names, object_ids=obj_ids,
object_sizes=obj_sizes, visible=visible, valid=visible)
def get_paths_and_bboxes(self, sequence_info):
seq_name = sequence_info['sequence']
annos_root = self._anno_path / seq_name
images_root = self._jpeg_path / seq_name
frame_names = sequence_info['frame_names']
f2i = {f: i for i, f in enumerate(frame_names)}
images = [str(images_root / (f + ".jpg")) for f in frame_names]
# Find the frames where ground truth is available and
# get the bounding boxes and segmentation labels of those frames
all_bboxes = self.gmeta.get_bboxes_per_frame(seq_name)
gt_labels = [str(annos_root / (f + ".png")) if f in all_bboxes.keys() else None for f in frame_names]
gt_bboxes = OrderedDict()
for obj_id in sequence_info['object_ids']:
gt_bboxes[obj_id] = np.array([all_bboxes.get(frame, {}).get(obj_id, [-1, -1, -1, -1]) for frame in frame_names])
return images, gt_labels, gt_bboxes
def _construct_sequence(self, sequence_info):
raise NotImplementedError
def get_sequence_list(self):
if len(self.sequence_list) > 0:
return self.sequence_list
self.sequence_list = [self._construct_sequence(self.get_sequence_info(i)) for i in range(len(self._samples))]
return self.sequence_list
def __len__(self):
return len(self._samples)
def _get_image_path(self, meta, frame_id):
return self._jpeg_path / meta['sequence'] / (meta['frame_names'][frame_id] + ".jpg")
def _get_anno_path(self, meta, frame_id):
return self._anno_path / meta['sequence'] / (meta['frame_names'][frame_id] + ".png")
def get_frames(self, sample_id, frame_ids, anno=None):
""" Fetch frames with the given ids.
:param sample_id: Sample to get.
:param frame_ids: List of frame indices in the sequence belonging to the sample_id
:return: dict of metadata and data:
sequence: Sequence name
images: List of images. No entries may be None
labels: List of label/mask images. Entries may be None if the data is missing
bboxes: List of bounding boxes. Entries may be None if the data is missing
"""
seq_name, obj_ids = self._samples[sample_id]
meta = self.get_sequence_info(sample_id) if anno is None else anno
frame_names = meta['frame_names']
images = [self._load_image(self._jpeg_path / seq_name / (frame_names[f] + ".jpg")) for f in frame_ids]
labels = [self._load_anno(self._anno_path / seq_name / (frame_names[f] + ".png")) for f in frame_ids]
# Generate bounding boxes for the requested objects
bboxes = []
for lb in labels:
lb = torch.from_numpy(lb.squeeze())
frame_bbs = {}
for obj_id in obj_ids:
bbox = masks_to_bboxes(lb == int(obj_id), fmt='t')
if bbox[3] == 0 or bbox[2] == 0:
print("!")
frame_bbs[obj_id] = bbox
bboxes.append(frame_bbs)
# Insert empty bboxes for missing object ids
for bbox in bboxes:
for obj_id in obj_ids:
if obj_id not in bbox:
bbox[obj_id] = torch.zeros(4, dtype=torch.float32)
# Remap to object id 1, if requested - for training
if not self.multiobj:
assert len(obj_ids) == 1
obj_id = obj_ids[0]
labels = [torch.Tensor(lb == int(obj_id)) for lb in labels]
bboxes = [bbox[obj_id] for bbox in bboxes]
else:
labels = [torch.Tensor(lb) for lb in labels]
object_meta = {key: meta[key] for key in ['sequence', 'frame_shape', 'frame_names', 'object_ids']}
anno_frames = dict(bbox=bboxes, mask=labels)
for key in ['object_sizes', 'visible', 'valid']:
value = meta[key]
anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids]
return images, anno_frames, object_meta
def get_name(self):
return "%s/%s/%s" % (self.name, self.version, self.split)
def has_class_info(self):
return False
def has_occlusion_info(self):
return True
def get_num_classes(self):
return 0
def get_class_list(self):
return []
def get_sequences_in_class(self, class_name):
raise []
def has_segmentation_info(self):
return True