-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathw2_2.py
336 lines (302 loc) · 8.63 KB
/
w2_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from __future__ import division
from ch6 import *
import numpy
def reverseComplement(string):
myStr = []
for i in range(0, len(string)):
if string[i] == 'A':
myStr.append('T')
elif string[i] == 'T':
myStr.append('A')
elif string[i] == 'G':
myStr.append('C')
elif string[i] == 'C':
myStr.append('G')
myStr = myStr[::-1]
myStr = "".join(myStr)
return myStr
def hammingDistance(genome1, genome2):
hd = 0
if len(genome1) == len(genome2):
for i in range (0, len(genome1)):
if genome1[i]!=genome2[i]:
hd +=1
return hd
def appxPatternCount(pattern, genome, d):
a = []
for i in range(0, (len(genome) - len(pattern) + 1)):
if(hammingDistance(genome[i:i+len(pattern)], pattern) <= d):
a.append(str(i))
return len(a)
def suffix(pattern):
return pattern[1: ]
def firstSymbol(pattern):
return pattern[0]
#d = 1
def immediateNeighbours(pattern):
neighborhood = []
neighborhood.append(pattern)
bases = ['A', 'T', 'G', 'C']
for i in range(0, len(pattern)):
symbol = pattern[i]
for j in range(0, len(bases)):
if bases[j]!=symbol:
pattern = list(pattern)
pattern[i] = bases[j]
pattern = ''.join(pattern)
print(pattern)
neighborhood.append(pattern)
pattern = list(pattern)
pattern[i] = symbol
pattern = ''.join(pattern)
print(pattern)
return neighborhood
def neighbors(pattern, d):
bases = ['A', 'T', 'G', 'C']
if d == 0:
return pattern
if len(pattern) == 1:
return bases
neighborhood = []
suffixNeighbors = neighbors(suffix(pattern), d)
for text in suffixNeighbors:
if hammingDistance(suffix(pattern), text) < d:
for j in bases:
neighborhood.append(j + text)
else:
neighborhood.append(firstSymbol(pattern) + text)
return neighborhood
def iterativeNeighbors(pattern, d): #not working --> infinite loop
neighborhood = ['A', 'T', 'G', 'C']
for j in range(1, d+1):
for pattern_ in neighborhood:
x = immediateNeighbours(pattern_)
for k in x:
neighborhood.append(k)
return neighborhood
def FrequentWordsWithMismatchesSorting(text, k, d):
frequentPatterns = []
neighborhood = []
index = []
count = []
for i in range(0, len(text) - k + 1):
n = neighbors(text[i:i+k], d)
for j in range(0, len(n)):
neighborhood.append(n[j])
n = []
neighborhoodArray = neighborhood
for i in range(0, len(neighborhood)):
pattern = neighborhoodArray[i]
index.append(RecursivePatternToNumber(pattern))
count.append(1)
index.sort()
for i in range(0, len(neighborhood) - 1):
if index[i] == index[i+1]:
count[i+1] = count[i] + 1
maxCount = max(count)
for i in range(0, len(neighborhood)):
if count[i] == maxCount:
pattern = RecursiveNumberToPattern(index[i], k)
frequentPatterns.append(pattern)
return frequentPatterns
def FrequentWordsWithMismatchesAndReverseComplement(text, k, d):
rtext = reverseComplement(text)
frequencyArray = []
for i in range(0, 4**k):
frequencyArray.append(0)
for i in range(0, len(text) - k + 1):
pattern = text[i: i+k]
neighborhood = neighbors(pattern, d)
for appxPattern in neighborhood:
j = RecursivePatternToNumber(appxPattern)
frequencyArray[j] += 1
for i in range(0, len(rtext) - k + 1):
pattern = rtext[i:i+k]
neighborhood = neighbors(pattern,d)
for appxPattern in neighborhood:
j = RecursivePatternToNumber(appxPattern)
frequencyArray[j] += 1
frequentPatterns = []
maxCount = max(frequencyArray)
for i in range(0, len(frequencyArray)):
if frequencyArray[i] == maxCount:
frequentPatterns.append(RecursiveNumberToPattern(i, k))
return frequentPatterns
def computingFrequenciesWithMismatches(text, k , d):
frequencyArray = []
for i in range(0, 4**k):
frequencyArray.append(0)
for i in range(0, len(text) - k + 1):
pattern = text[i: i+k]
neighborhood = neighbors(pattern, d)
for appxPattern in neighborhood:
j = RecursivePatternToNumber(appxPattern)
frequencyArray[j] += 1
frequentPatterns = []
maxCount = max(frequencyArray)
for i in range(0, len(frequencyArray)):
if frequencyArray[i] == maxCount:
frequentPatterns.append(RecursiveNumberToPattern(i, k))
return frequentPatterns
def MotifEnumeration(dna, k, d):
pattern = []
neighborhood = []
for dna_ in dna:
myneigh = []
for i in range(0, len(dna_) - k + 1):
n = neighbors(dna_[i:i+k], d)
for j in n:
if j not in myneigh:
myneigh.append(j)
neighborhood.append(myneigh)
pattern = list(set(neighborhood[0]).intersection(*neighborhood))
return pattern
def DistanceBetweenPatternAndStrings(pattern, dna):
k = len(pattern)
distance = 0
for dna_ in dna:
hd = 9999999
for i in range(0, len(dna_) - k + 1):
pattern_ = dna_[i:i+k]
if hd > hammingDistance(pattern, pattern_):
hd = hammingDistance(pattern, pattern_)
distance += hd
return distance
def MedianString(dna, k):
distance = 9999999
median = ''
for i in range(0, 4**k):
pattern = RecursiveNumberToPattern(i, k)
if distance > DistanceBetweenPatternAndStrings(pattern, dna):
distance = DistanceBetweenPatternAndStrings(pattern, dna)
median = pattern
return median
def ProfileMostProbable(text, k ,profile_mat):
#profile mat is a dictionary
probs = []
kmers = []
for i in range(0, len(text) - k + 1):
pattern = text[i:i+k]
prob = 1
for j in range(0, len(pattern)):
if pattern[j] == 'A':
prob *= profile_mat['A'][j]
elif pattern[j] == 'C':
prob *= profile_mat['C'][j]
elif pattern[j] == 'G':
prob *= profile_mat['G'][j]
elif pattern[j] == 'T':
prob *= profile_mat['T'][j]
probs.append(prob)
kmers.append(pattern)
most_prob = ''
max_prob = max(probs)
for i in range(0, len(kmers)):
if probs[i] == max_prob:
most_prob = kmers[i]
break
return most_prob
def ProfileMatrixFromMotifs(motifs):
profile_mat = {}
profile_mat = {'A': [], 'C': [],'G': [], 'T': []}
bases = ['A','C', 'G','T']
for key in profile_mat.keys():
for i in range(0, len(motifs[0])):
profile_mat[key].append(0)
for i in range(0, len(motifs)):
mymotif = motifs[i]
for j in range(0, len(mymotif)):
if mymotif[j] == 'A':
profile_mat['A'][j] += 1
elif mymotif[j] == 'C':
profile_mat['C'][j] += 1
elif mymotif[j] == 'G':
profile_mat['G'][j] += 1
elif mymotif[j] == 'T':
profile_mat['T'][j] += 1
for key in profile_mat.keys():
l = profile_mat[key]
for i in range(0, len(l)):
l[i] /= len(motifs[0])
return profile_mat
def ProfileMatrixFromMotifsWithPseudocounts(motifs, pseudocount):
profile_mat = {}
profile_mat = {'A': [], 'C': [],'G': [], 'T': []}
bases = ['A','C', 'G','T']
for key in profile_mat.keys():
for i in range(0, len(motifs[0])):
profile_mat[key].append(0)
for i in range(0, len(motifs)):
mymotif = motifs[i]
for j in range(0, len(mymotif)):
if mymotif[j] == 'A':
profile_mat['A'][j] += 1
elif mymotif[j] == 'C':
profile_mat['C'][j] += 1
elif mymotif[j] == 'G':
profile_mat['G'][j] += 1
elif mymotif[j] == 'T':
profile_mat['T'][j] += 1
for key in profile_mat.keys():
l = profile_mat[key]
for i in range(0, len(l)):
l[i] += pseudocount
for key in profile_mat.keys():
l = profile_mat[key]
for i in range(0, len(l)):
l[i] /= (len(motifs[0])*2)
return profile_mat
def score(motifs):
profile = ProfileMatrixFromMotifsWithPseudocounts(motifs, 1)
consensus = []
for i in range(0, len(motifs[0])):
m = profile['A'][i]
let = 'A'
if profile['C'][i] > m:
let = 'C'
m = profile['C'][i]
if profile['G'][i] > m:
let = 'G'
m = profile['G'][i]
if profile['T'][i] > m:
let = 'T'
m = profile['T'][i]
consensus.append(let)
consensus = ''.join(consensus)
score = 0
for i in range(0, len(motifs)):
score += hammingDistance(motifs[i],consensus)
return score
def GreedyMotifSearch(dna, k, t):
best_motifs = []
best_score = 999999
for i in range(0, len(dna[0]) - k + 1):
motifs = []
motifs.append(dna[0][i:i+k])
for j in range(1,t):
profile = ProfileMatrixFromMotifs(motifs)
mymotif = ProfileMostProbable(dna[j], k, profile)
motifs.append(mymotif)
current_score = score(motifs)
if current_score < best_score:
best_score = current_score
best_motifs = motifs
return best_motifs
def GreedyMotifSearchWithPseudocounts(dna, k, t, pseudocount):
best_motifs = []
best_score = 999999
for i in range(0, len(dna[0]) - k + 1):
motifs = []
motifs.append(dna[0][i:i+k])
for j in range(1,t):
profile = ProfileMatrixFromMotifsWithPseudocounts(motifs, pseudocount)
mymotif = ProfileMostProbable(dna[j], k, profile)
motifs.append(mymotif)
current_score = score(motifs)
if current_score < best_score:
best_score = current_score
best_motifs = motifs
return best_motifs
motifs = ['CCA', 'CCT', 'CTT', 'TTG']
profile_mat = ProfileMatrixFromMotifsWithPseudocounts(motifs, 1)
print(ProfileMostProbable('ATGTTTTG',3,profile_mat))