forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclip_guided_stable_diffusion.py
321 lines (268 loc) · 12.9 KB
/
clip_guided_stable_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import inspect
from typing import List, Optional, Union
import torch
from torch import nn
from torch.nn import functional as F
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cut_power=1.0):
super().__init__()
self.cut_size = cut_size
self.cut_power = cut_power
def forward(self, pixel_values, num_cutouts):
sideY, sideX = pixel_values.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(num_cutouts):
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedStableDiffusion(DiffusionPipeline):
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
- https://github.com/Jack000/glid-3-xl
- https://github.dev/crowsonkb/k-diffusion
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
self.make_cutouts = MakeCutouts(feature_extractor.size)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts=True,
):
latents = latents.detach().requires_grad_()
if isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
else:
latent_model_input = latents
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, PNDMScheduler):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
sample = 1 / 0.18215 * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
if use_cutouts:
image = self.make_cutouts(image, num_cutouts)
else:
image = transforms.Resize(self.feature_extractor.size)(image)
image = self.normalize(image)
image_embeddings_clip = self.clip_model.get_image_features(image).float()
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
if use_cutouts:
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
dists = dists.view([num_cutouts, sample.shape[0], -1])
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
else:
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
clip_guidance_scale: Optional[float] = 100,
clip_prompt: Optional[Union[str, List[str]]] = None,
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
if clip_guidance_scale > 0:
if clip_prompt is not None:
clip_text_input = self.tokenizer(
clip_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
else:
clip_text_input = text_input.input_ids.to(self.device)
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_device = "cpu" if self.device.type == "mps" else self.device
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
if latents is None:
latents = torch.randn(
latents_shape,
generator=generator,
device=latents_device,
)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[i]
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[0] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts,
)
# compute the previous noisy sample x_t -> x_t-1
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = self.scheduler.step(noise_pred, i, latents).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)