-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
137 lines (110 loc) · 5.97 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
from agent import Agent
from agentEncoder import AgentEncoder
from targetEncoder import TargetEncoder
from decoder import Decoder
class ModelRunner(nn.Module):
def __init__(self, cfg, decode_type='sampling', training=True):
super(ModelRunner, self).__init__()
self.cfg = cfg
self.local_agent_encoder = AgentEncoder(self.cfg)
self.local_target_encoder = TargetEncoder(self.cfg)
self.local_decoder = Decoder(self.cfg)
self.decode_type = decode_type
self.device = self.cfg["device"]
def forward(self, env):
vehicle_amount = env.vehicle_total_num
agentList = []
route_set = dict()
agent_id = 0
for v_type in env.vehicle_type:
vehicle_state = env.vehicle_initial[v_type]
for i in range(vehicle_state["num"]):
route_set[agent_id]={"type":v_type}
agentList.append(Agent(agentID=agent_id,
local_agent_encoder=self.local_agent_encoder,
local_target_encoder=self.local_target_encoder,
local_decoder=self.local_decoder,
vehicle_type = v_type,
vehicle_pos = vehicle_state["position"][0,i,None,None],
vehicle_vel = vehicle_state["velocity"],
decode_type=self.decode_type,
device = self.device))
agent_id += 1
# for v in self.cfg.vehicle_config:
# vehicle_state = env.vehicle_initial[v.type_name]
# for i in range(vehicle_state["num"]):
# agentList.append(Agent(agentID=i,
# local_agent_encoder=self.local_agent_encoder,
# local_target_encoder=self.local_target_encoder,
# local_decoder=self.local_decoder,
# vehicle_pos = vehicle_state["position"][0,i,None,None],
# vehicle_vel = vehicle_state["velocity"],
# decode_type=self.decode_type,
# device = self.device))
agent_action_gap_list = torch.zeros(vehicle_amount)
waiting_agent_list = torch.zeros(vehicle_amount)
while True:
all_finished = True
for i in range(vehicle_amount):
if agentList[i].next_action_gap <= torch.finfo(torch.float32).eps:
obs = env.get_vehicle_observation(agentList,i)
next_target_index, _ = agentList[i].run(obs)
# env.step(agentList[i], next_target_index)
if agentList[i].finish:
waiting_agent_list[i] = 1
if next_target_index == 0:
waiting_agent_list[i] = 1
if next_target_index is not None:
if next_target_index.item() != 0:
waiting_agent_list[i] = 0
env.update_mask(next_target_index.item())
agent_action_gap_list[i] = agentList[i].next_action_gap
all_finished = all_finished and agentList[i].finish
# Cost of flight time.
if all_finished:
for i in range(vehicle_amount):
agentList[i].cost += agentList[i].get_sum_flight_time()
break
# Get penalty when every agent is idle before finishing whole mission.
# if int(env.waiting_agent_list.sum())==vehicle_amount:
# for i in range(vehicle_amount):
# agentList[i].cost += agentList[i].get_sum_flight_time()+10
# break
if int(waiting_agent_list.sum())==vehicle_amount:
for i in range(vehicle_amount):
agentList[i].cost += agentList[i].get_sum_flight_time()+100
break
# if env.waiting_agent_list.sum() < vehicle_amount:
# minimum_select_gap = env.agent_action_gap_list[env.waiting_agent_list<1].min()
if waiting_agent_list.sum() < vehicle_amount:
minimum_select_gap = agent_action_gap_list[waiting_agent_list<1].min()
# for i in range(vehicle_amount):
# agentList[i].next_action_gap -= minimum_select_gap
# env.agent_action_gap_list[i] = agentList[i].next_action_gap
# if agentList[i].next_action_gap < 0:
# agentList[i].next_action_gap = 0
for i in range(vehicle_amount):
agentList[i].next_action_gap -= minimum_select_gap
agent_action_gap_list[i] = agentList[i].next_action_gap
if agentList[i].next_action_gap < 0:
agentList[i].next_action_gap = 0
flight_time_list = []
reward_list = []
episode_buffer = [[] for _ in range(5)]
for i in range(vehicle_amount):
flight_time_list.append(agentList[i].get_sum_flight_time())
reward_list.append(agentList[i].cost)
route_set[i]["route"] = agentList[i].task_list.tolist()
episode_buffer[0] += agentList[i].observation_agent
episode_buffer[1] += agentList[i].observation_idle_embeddings
episode_buffer[2] += agentList[i].observation_task
episode_buffer[3] += agentList[i].observation_mask
episode_buffer[4] += agentList[i].action_list
flight_time_list = torch.stack(flight_time_list) # [vehicle_amount,1]
reward_list = torch.stack(reward_list)
per_agent_reward = -torch.max(reward_list).unsqueeze(0).repeat(len(episode_buffer[4]))
total_reward = -torch.max(reward_list)
max_flight_time, max_id = torch.max(flight_time_list,0)
return route_set, per_agent_reward, total_reward, -max_flight_time, max_flight_time, max_id.item(), episode_buffer