-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCBAA.py
150 lines (113 loc) · 3.56 KB
/
CBAA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import copy
from scipy.spatial import distance_matrix
class CBAA_agent():
def __init__(self, id=0, task=None):
"""
c: individual score list
x: local assignment list
y: local winning bid list
state: state of the robot
"""
self.task_num = task.shape[0]
# Local Task Assignment List
self.x = [0 for i in range(self.task_num)]
# Local Winning Bid List
self.y = np.array([ -np.inf for _ in range(self.task_num)])
# This part can be modified depend on the problem
self.state = np.random.uniform(low=0, high=1, size=(1,2)) # Agent State (Position)
self.c = -distance_matrix(self.state,task).squeeze() # Score (Euclidean Distance)
# Agent ID
self.id = id
def select_task(self):
if sum(self.x) == 0:
# Valid Task List
h = (self.c > self.y)
if h.any():
# Just for euclidean distance score (negative)
c = copy.deepcopy(self.c)
c[h==False] = -np.inf
self.J = np.argmax(c)
self.x[self.J] = 1
self.y[self.J] = self.c[self.J]
def update_task(self, Y=None):
"""
[input]
Y: winning bid lists from neighbors (dict:{neighbor_id:bid_list})
[output]
converged: True or False
"""
old_x = copy.deepcopy(self.x)
id_list = list(Y.keys())
id_list.insert(0, self.id)
y_list = np.array(list(Y.values()))
## Update local winning bid list
# When recive only one message
if len(y_list.shape)==1:
# make shape as (1,task_num)
y_list = y_list[None,:]
# Append the agent's local winning bid list and neighbors'
y_list = np.vstack((self.y[None,:],y_list))
self.y = y_list.max(0)
## Outbid check
# Winner w.r.t the updated local winning bid list
max_id = np.argmax(y_list[:,self.J])
z = id_list[max_id]
# If the agent is not the winner
if z != self.id:
# Release the assignment
self.x[self.J] = 0
converged = False
if old_x == self.x:
converged = True
return converged
def send_message(self):
"""
Return local winning bid list
[output]
y: winning bid list (list:task_num)
"""
return self.y.tolist()
if __name__=="__main__":
task_num = 5
robot_num = 5
task = np.random.uniform(low=0,high=1,size=(task_num,2))
robot_list = [CBAA_agent(id=i, task=task) for i in range(robot_num)]
# Network Initialize
G = np.ones((robot_num, robot_num)) # Fully connected network\
# Configure network topology manually
# G[0,1]=0
# G[1,0]=0
t = 0 # Iteration number
while True:
converged_list = []
print("==Iteration {}==".format(t))
## Phase 1: Auction Process
print("Auction Process")
for robot in robot_list:
# select task by local information
robot.select_task()
print(robot.x)
## Phase 2: Consensus Process
print("Consensus Process")
# Send winning bid list to neighbors (depend on env)
message_pool = [robot.send_message() for robot in robot_list]
for robot_id, robot in enumerate(robot_list):
# Recieve winning bidlist from neighbors
g = G[robot_id]
connected, = np.where(g==1)
connected = list(connected)
connected.remove(robot_id)
if len(connected) > 0:
Y = {neighbor_id:message_pool[neighbor_id] for neighbor_id in connected}
else:
Y = None
# Update local information and decision
if Y is not None:
converged = robot.update_task(Y)
converged_list.append(converged)
print(robot.x)
t += 1
if sum(converged_list)==robot_num:
break
print("CONVERGED")