forked from PaddlePaddle/PaddleHelix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
254 lines (217 loc) · 7.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import time
import argparse
import random
from datetime import datetime
from tqdm import tqdm
import numpy as np
import paddle
paddle.disable_static()
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.nn import BCEWithLogitsLoss
from dataset import GoTermDataset, GoTermDataLoader
from model import ProteinSIGN
from custom_metrics import do_compute_metrics
from utils import get_model_params_state, print_metrics
paddle.seed(123)
def setup_seed(seed):
# paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
def do_compute(model, batch):
logits = model(*batch[:-1])
return logits, batch[-1]
def run_batch(model, optimizer, data_loader, epoch_i, desc, loss_fn):
total_loss = 0
logits_list = []
ground_truth = []
for batch in tqdm(data_loader, desc=f"{desc} Epoch {epoch_i}"):
logits, labels = do_compute(model, batch)
loss = loss_fn(logits, labels)
loss = paddle.mean(paddle.sum(loss, -1))
if model.training:
loss.backward()
optimizer.step()
optimizer.clear_grad()
total_loss += loss.item()
logits_list.append(F.sigmoid(logits).tolist())
ground_truth.append(labels.tolist())
total_loss /= len(data_loader)
logits_list = np.concatenate(logits_list)
ground_truth = np.concatenate(ground_truth)
metrics = None
if not model.training:
metrics = do_compute_metrics(ground_truth, logits_list)
return total_loss, metrics
def train(
model, train_data_loader, val_data_loader, loss_fn, optimizer, n_epochs, model_name
):
best_auprc = -1
for epoch_i in range(1, n_epochs + 1):
start = time.time()
model.train()
## Training
train_loss, train_metrics = run_batch(
model, optimizer, train_data_loader, epoch_i, "train", loss_fn
)
model.eval()
with paddle.no_grad():
## Validation
if val_data_loader:
val_loss, val_metrics = run_batch(
model, optimizer, val_data_loader, epoch_i, "val", loss_fn
)
if best_auprc < val_metrics[1]:
current_sate = get_model_params_state(
model, args, epoch_i, *val_metrics
)
paddle.save(current_sate, f"{model_name}.pdparams")
best_auprc = val_metrics[1]
if train_data_loader:
print(f"\n#### Epoch {epoch_i} time {time.time() - start:.4f}s")
print_metrics(train_loss, 0, 0)
if val_data_loader:
print(f"#### Validation epoch {epoch_i}")
print_metrics(val_loss, *val_metrics)
if __name__ == "__main__":
# data_source = '/home/arnold/Implementations/PROT-function-prediction'
data_source = "."
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", type=str, default="0")
parser.add_argument("--seed", type=int, default=123)
parser.add_argument(
"--train_file",
type=str,
default="./data/nrPDB-GO_2019.06.18_train.txt",
help="File containing training protein chains.",
)
parser.add_argument(
"--valid_file",
type=str,
default="./data/nrPDB-GO_2019.06.18_valid.txt",
help="File containing validation protein chains.",
)
parser.add_argument(
"--protein_chain_graphs",
type=str,
default="./data/chain_graphs",
help="Path to graph reprsentations of proteins.",
)
parser.add_argument(
"--label_data_path",
type=str,
default="./data/labels/molecular_function.npz",
help="Mapping containing protein chains with associated labeels.",
)
parser.add_argument("--feat_drop", type=float, default=0.3)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--epochs", type=int, default=200)
parser.add_argument("--num_convs", type=int, default=2)
parser.add_argument("--hidden_dim", type=int, default=128)
parser.add_argument(
"--n_channels",
type=int,
default=26,
help="Number of amino acids (residues) symbols.",
)
parser.add_argument("--dense_dims", type=int, default=[512], nargs="+")
parser.add_argument("--num_heads", type=int, default=3)
parser.add_argument(
"--cmap_thresh",
type=int,
default=10,
help="Distance (in armstrong) threshold for concat map construction.",
)
parser.add_argument(
"--num_angle", type=int, default=4, help="Number of angle domains."
)
parser.add_argument(
"--merge_e2e",
type=str,
default="cat",
help="How to merge output from edge to edge layer.",
)
parser.add_argument(
"--merge_e2n",
type=str,
default="mean",
help="How to merge output from edge to node layer.",
)
parser.add_argument(
"--use_cache",
type=int,
default=0,
choices=[0, 1],
help="Whether to save protein graph in memory for fast reading.",
)
args = parser.parse_args()
args.activation = F.relu
if args.seed:
setup_seed(args.seed)
args.use_cache = bool(args.use_cache)
if int(args.cuda) == -1:
paddle.set_device("cpu")
else:
paddle.set_device("gpu:%s" % args.cuda)
train_chain_list = [p.strip() for p in open(args.train_file)]
valid_chain_list = [p.strip() for p in open(args.valid_file)]
train_dataset = GoTermDataset(
train_chain_list,
args.num_angle,
args.n_channels,
args.protein_chain_graphs,
args.cmap_thresh,
args.label_data_path,
use_cache=args.use_cache,
)
valid_dataset = GoTermDataset(
valid_chain_list,
args.num_angle,
args.n_channels,
args.protein_chain_graphs,
args.cmap_thresh,
args.label_data_path,
use_cache=args.use_cache,
)
train_loader = GoTermDataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True
)
valid_loader = GoTermDataLoader(valid_dataset, batch_size=args.batch_size)
args.n_labels = train_dataset.n_labels
model = ProteinSIGN(args)
task_name = os.path.split(args.label_data_path)[-1]
task_name = os.path.splitext(task_name)[0]
args.task = task_name
time_stamp = str(datetime.now()).replace(":", "-").replace(" ", "_").split(".")[0]
args.model_name = f"models/{model.__class__.__name__}_{args.task}_{time_stamp}"
loss_fn = BCEWithLogitsLoss(reduction="none")
optimizer = optim.Adam(
parameters=model.parameters(),
learning_rate=args.lr,
beta1=0.95,
beta2=0.99,
weight_decay=args.weight_decay,
)
model_save_dir = os.path.split(args.model_name)[0]
if model_save_dir:
try:
os.makedirs(model_save_dir)
except FileExistsError:
pass
print(
f"\n{args.task}: Training on {len(train_dataset)} protein samples and {len(valid_dataset)} for validation."
)
print(f"Starting at {datetime.now()}\n")
print(args)
train(
model,
train_loader,
valid_loader,
loss_fn,
optimizer,
args.epochs,
args.model_name,
)