Skip to content

Unification of Japanses terminology #40

Open
@nzw0301

Description

@nzw0301

I want to unify terminology for more useful docs.

I found some different written forms

  • Numpy Array -> Numpy配列
  • . -> .
  • , -> ,
  • : -> :
  • ; -> ;
  • ( ) -> ()
  • str -> 文字列
  • boolean -> 真理値
  • int -> 整数
  • float -> 浮動小数点数
  • optimizer -> 最適化(アルゴリズム)
  • Arguments -> 引数
  • input shape -> 入力のshape
  • output shape -> 出力のshape
  • Return -> 戻り値
  • Sequential Model -> Sequentialモデル
  • Functional API -> Functional API
  • Recurrent -> Recurrent
  • metrics -> 評価値
  • EOS -> です/ます
  • See something -> ~~を参照
  • whether insert space or not before/after syntax highlight in sentence -> No
  • Data augmentation -> データ拡張
  • objective -> 目的関数
  • loss function -> 損失関数
  • training -> 学習
  • testing -> テスト
  • validation -> 検証
  • index -> インデックス
  • target -> ターゲット
  • layer -> レイヤー
  • shape -> shape
  • numbers (1 or 一) -> 1
  • regularizer -> 正則化
  • nD tensor -> n階テンソル
  • Fuzz factor -> 微小量

For example, shape is translated to "形状", "形" and "型" for now.

I think that translation to follow Japanses Python docs is easy for built-in.

thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions