@@ -87,89 +87,89 @@ for initializer in initializers_list:
8787<div class =" k-default-codeblock " >
8888```
8989Running <class 'keras.src.initializers.random_initializers.RandomNormal'>
90- Iteration --> 0 // Result --> 0.05609520897269249
91- Iteration --> 1 // Result --> 0.05609520897269249
90+ Iteration --> 0 // Result --> 0.000790853810030967
91+ Iteration --> 1 // Result --> 0.000790853810030967
9292```
9393</div >
9494
9595
9696<div class =" k-default-codeblock " >
9797```
9898Running <class 'keras.src.initializers.random_initializers.RandomUniform'>
99- Iteration --> 0 // Result --> 0.03690483793616295
100- Iteration --> 1 // Result --> 0.03690483793616295
99+ Iteration --> 0 // Result --> -0.02175668440759182
100+ Iteration --> 1 // Result --> -0.02175668440759182
101101```
102102</div >
103103
104104
105105<div class =" k-default-codeblock " >
106106```
107107Running <class 'keras.src.initializers.random_initializers.TruncatedNormal'>
108- Iteration --> 0 // Result --> 0.05230803042650223
109- Iteration --> 1 // Result --> 0.05230803042650223
108+ Iteration --> 0 // Result --> 0.000790853810030967
109+ Iteration --> 1 // Result --> 0.000790853810030967
110110```
111111</div >
112112
113113
114114<div class =" k-default-codeblock " >
115115```
116116Running <class 'keras.src.initializers.random_initializers.VarianceScaling'>
117- Iteration --> 0 // Result --> 1.1893247365951538
118- Iteration --> 1 // Result --> 1.1893247365951538
117+ Iteration --> 0 // Result --> 0.017981600016355515
118+ Iteration --> 1 // Result --> 0.017981600016355515
119119```
120120</div >
121121
122122
123123<div class =" k-default-codeblock " >
124124```
125125Running <class 'keras.src.initializers.random_initializers.GlorotNormal'>
126- Iteration --> 0 // Result --> 1.1893247365951538
127- Iteration --> 1 // Result --> 1.1893247365951538
126+ Iteration --> 0 // Result --> 0.017981600016355515
127+ Iteration --> 1 // Result --> 0.017981600016355515
128128```
129129</div >
130130
131131
132132<div class =" k-default-codeblock " >
133133```
134134Running <class 'keras.src.initializers.random_initializers.GlorotUniform'>
135- Iteration --> 0 // Result --> 1.2784210443496704
136- Iteration --> 1 // Result --> 1.2784210443496704
135+ Iteration --> 0 // Result --> -0.7536736726760864
136+ Iteration --> 1 // Result --> -0.7536736726760864
137137```
138138</div >
139139
140140
141141<div class =" k-default-codeblock " >
142142```
143143Running <class 'keras.src.initializers.random_initializers.HeNormal'>
144- Iteration --> 0 // Result --> 1.6819592714309692
145- Iteration --> 1 // Result --> 1.6819592714309692
144+ Iteration --> 0 // Result --> 0.025429822504520416
145+ Iteration --> 1 // Result --> 0.025429822504520416
146146```
147147</div >
148148
149149
150150<div class =" k-default-codeblock " >
151151```
152152Running <class 'keras.src.initializers.random_initializers.HeUniform'>
153- Iteration --> 0 // Result --> 1.8079603910446167
154- Iteration --> 1 // Result --> 1.8079603910446167
153+ Iteration --> 0 // Result --> -1.065855622291565
154+ Iteration --> 1 // Result --> -1.065855622291565
155155```
156156</div >
157157
158158
159159<div class =" k-default-codeblock " >
160160```
161161Running <class 'keras.src.initializers.random_initializers.LecunNormal'>
162- Iteration --> 0 // Result --> 1.1893247365951538
163- Iteration --> 1 // Result --> 1.1893247365951538
162+ Iteration --> 0 // Result --> 0.017981600016355515
163+ Iteration --> 1 // Result --> 0.017981600016355515
164164```
165165</div >
166166
167167
168168<div class =" k-default-codeblock " >
169169```
170170Running <class 'keras.src.initializers.random_initializers.LecunUniform'>
171- Iteration --> 0 // Result --> 1.2784210443496704
172- Iteration --> 1 // Result --> 1.2784210443496704
171+ Iteration --> 0 // Result --> -0.7536736726760864
172+ Iteration --> 1 // Result --> -0.7536736726760864
173173```
174174</div >
175175
@@ -273,8 +273,13 @@ def train_model(train_data: tf.data.Dataset, test_data: tf.data.Dataset) -> dict
273273 )
274274
275275 model.compile(
276- optimizer = " adam" , loss = " sparse_categorical_crossentropy" , metrics = [" accuracy" ]
276+ optimizer = " adam" ,
277+ loss = " sparse_categorical_crossentropy" ,
278+ metrics = [" accuracy" ],
279+ jit_compile = False ,
277280 )
281+ # jit_compile's default value is "auto" which will cause some problems in some
282+ # ops, therefore it's set to False.
278283
279284 # model.fit has a `shuffle` parameter which has a default value of `True`.
280285 # If you are using array-like objects, this will shuffle the data before
@@ -298,6 +303,13 @@ train_ds = tf.data.Dataset.from_tensor_slices((train_images, train_labels))
298303test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels))
299304```
300305
306+ <div class =" k-default-codeblock " >
307+ ```
308+ Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
309+ 11490434/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
310+
311+ ```
312+ </div >
301313Remember we called ` tf.config.experimental.enable_op_determinism() ` at the
302314beginning of the function. This makes the ` tf.data ` operations deterministic.
303315However, making ` tf.data ` operations deterministic comes with a performance
@@ -375,11 +387,11 @@ history = train_model(train_data, test_data)
375387<div class =" k-default-codeblock " >
376388```
377389Epoch 1/2
378- 938/938 ━━━━━━━━━━━━━━━━━━━━ 26s 27ms /step - accuracy: 0.5418 - loss: 1.2867 - val_accuracy: 0.9291 - val_loss: 0.2303
390+ 938/938 ━━━━━━━━━━━━━━━━━━━━ 73s 73ms /step - accuracy: 0.5726 - loss: 1.2175 - val_accuracy: 0.9401 - val_loss: 0.1924
379391Epoch 2/2
380- 938/938 ━━━━━━━━━━━━━━━━━━━━ 25s 26ms /step - accuracy: 0.9075 - loss: 0.2983 - val_accuracy: 0.9583 - val_loss: 0.1343
381- 157/157 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms /step - accuracy: 0.9512 - loss: 0.1559
382- Model accuracy on test data: 95.83 %
392+ 938/938 ━━━━━━━━━━━━━━━━━━━━ 89s 81ms /step - accuracy: 0.9105 - loss: 0.2885 - val_accuracy: 0.9630 - val_loss: 0.1131
393+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 3s 17ms /step - accuracy: 0.9553 - loss: 0.1353
394+ Model accuracy on test data: 96.30 %
383395
384396```
385397</div >
0 commit comments