@@ -143,7 +143,7 @@ def __init__(
143143 )
144144
145145 # Rating model.
146- self .rating_model = tf . keras .Sequential (
146+ self .rating_model = keras .Sequential (
147147 [
148148 keras .layers .Dense (layer_size , activation = "relu" )
149149 for layer_size in layer_sizes
@@ -162,7 +162,7 @@ def __init__(
162162
163163 # Top-k accuracy for retrieval
164164 self .top_k_metric = keras .metrics .SparseTopKCategoricalAccuracy (
165- k = 100 , from_sorted_ids = True
165+ k = 10 , from_sorted_ids = True
166166 )
167167 # RMSE for ranking
168168 self .rmse_metric = keras .metrics .RootMeanSquaredError ()
@@ -306,7 +306,7 @@ def compute_metrics(self, x, y, y_pred, sample_weight=None):
306306 ranking_loss_wt = 1.0 ,
307307 retrieval_loss_wt = 0.0 ,
308308)
309- model .compile (optimizer = tf . keras .optimizers .Adagrad (0.1 ))
309+ model .compile (optimizer = keras .optimizers .Adagrad (0.1 ))
310310model .fit (train_ratings , epochs = 5 )
311311
312312model .evaluate (test_ratings )
@@ -318,7 +318,7 @@ def compute_metrics(self, x, y, y_pred, sample_weight=None):
318318 ranking_loss_wt = 0.0 ,
319319 retrieval_loss_wt = 1.0 ,
320320)
321- model .compile (optimizer = tf . keras .optimizers .Adagrad (0.1 ))
321+ model .compile (optimizer = keras .optimizers .Adagrad (0.1 ))
322322model .fit (train_ratings , epochs = 5 )
323323
324324model .evaluate (test_ratings )
@@ -330,7 +330,7 @@ def compute_metrics(self, x, y, y_pred, sample_weight=None):
330330 ranking_loss_wt = 1.0 ,
331331 retrieval_loss_wt = 1.0 ,
332332)
333- model .compile (optimizer = tf . keras .optimizers .Adagrad (0.1 ))
333+ model .compile (optimizer = keras .optimizers .Adagrad (0.1 ))
334334model .fit (train_ratings , epochs = 5 )
335335
336336model .evaluate (test_ratings )
0 commit comments