-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_utils.py
87 lines (72 loc) · 3.04 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Dropout RNN training utilities"""
import torch
from sklearn.metrics import accuracy_score, precision_score
class Metric:
Y, Y_pred = None, None
def collect(self, y: torch.Tensor, y_pred: torch.Tensor):
assert len(y.shape) == 1 and y.shape == y_pred.shape
if self.Y is None:
self.Y, self.Y_pred = y, y_pred
else:
self.Y = torch.cat((self.Y, y))
self.Y_pred = torch.cat((self.Y_pred, y_pred))
def print_metric(self):
raise Exception("Not implemented")
class BCLogitMetric(Metric):
def accuracy(self):
return accuracy_score(self.Y, torch.round(torch.sigmoid(self.Y_pred)))
def print_metric(self):
print("Accuracy = %.3f" % self.accuracy())
def train_model(model, trainloader, valloader, criterion, optimizer, path, epochs=100, patience=5, metrics={}):
"""Train model"""
best_val_loss = float("inf")
retry = 0
for epoch in range(epochs):
for phase in ["train", "validate"]:
if phase == "train":
model.train()
dataloader = trainloader
else:
model.eval()
dataloader = valloader
batch_count = len(dataloader)
running_loss = 0.
for i, (x, y) in enumerate(dataloader):
if phase == "train":
optimizer.zero_grad()
output = model(x.transpose(-2, -3))
loss = criterion(output, y)
loss_ = loss + model.regularizer() / len(dataloader.dataset)
loss_.backward()
optimizer.step()
else:
with torch.no_grad():
output = model(x.transpose(-2, -3))
loss = criterion(output, y)
for metric in metrics:
metric.collect(y, output)
running_loss += loss.item()
# print statistics
print('[%d, %3.2f%%] %s loss: %.6f' %
(epoch + 1, (i+1)*100/batch_count, phase, loss.item()), end='\r')
print('[%d, 100.00%%] %s loss: %.6f' %
(epoch + 1, phase, running_loss * dataloader.batch_size / len(dataloader.dataset)))
if phase == "validate":
for metric in metrics:
metric.print_metric()
# Early stop
if best_val_loss > running_loss: # improvement
best_val_loss = running_loss
retry = 0
torch.save(model.state_dict(), path)
else:
retry += 1
print("Retry %d/%d" % (retry, patience))
if retry >= patience:
model.load_state_dict(torch.load(path))
model.eval()
return model
print("Finish training")
model.load_state_dict(torch.load(path))
model.eval()
return model