Skip to content

Commit e32d3a0

Browse files
Merge branch 'devel'
2 parents df560c9 + 81f6bf5 commit e32d3a0

File tree

8 files changed

+29
-31
lines changed

8 files changed

+29
-31
lines changed

CHANGELOG.md

Lines changed: 18 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,42 +1,47 @@
11
## Upcoming
22

3-
## [1.0.7] - 2020-11-14
3+
## [1.0.8] - 2021 December 12
4+
5+
- Fixed indexing error in writing the *csv files for the p2 app grids (e.g. "Gene sets in Aspect")
6+
7+
8+
## [1.0.7] - 2021 November 14
49

510
- Added ability to export data in grids as *csv
611
- Small revisions to docs
712

8-
## [1.0.6] - 2020-10-06
13+
## [1.0.6] - 2021 October 06
914

1015
- Fixed `read10xMatrix()` to work with new 10x files
1116

12-
## [1.0.5] - 2020-08-11
17+
## [1.0.5] - 2021 August 11
1318

1419
### Changed
1520

1621
- Removed the vignettes and dependency on the drat repository at https://github.com/kharchenkolab/p2data
1722

18-
## [1.0.4] - 2020-06-28
23+
## [1.0.4] - 2021 June 28
1924

2025
### Changed
2126

2227
- Fix `self$counts <- counts`
2328
- Fix `Knn()` in `pagoda2WebApp.R`
2429

25-
## [1.0.3] - 2020-05-01
30+
## [1.0.3] - 2021 May 01
2631

2732
### Changed
2833

2934
- Removed `jsDist()` as it's in sccore
3035
- Removed `multi2dend()` as it's in sccore
3136
- Removed strong dependency for p2data
3237

33-
## [1.0.2] - 2020-03-03
38+
## [1.0.2] - 2021 March 03
3439

3540
### Changed
3641

3742
- Revised vignettes figures for the HTML tutorial
3843

39-
## [1.0.1] - 2020-02-25
44+
## [1.0.1] - 2021 February 25
4045

4146
### Added
4247
- Returned copy constructor
@@ -46,7 +51,7 @@
4651
- Updated Dockerfile
4752
- Fixed 'batch' param in Pagoda2 constructor
4853

49-
## [1.0.0] - 2020-01-28
54+
## [1.0.0] - 2021 January 28
5055
- The package was edited extensively to upload to CRAN
5156

5257
### Added
@@ -60,14 +65,14 @@
6065
- revise `message()` spacing for `verbose` statements
6166
- various changes for CRAN, e.g. `par()`, removing calls to `installed.packages()`, etc.
6267

63-
## [0.1.4] - 2020-10-05
68+
## [0.1.4] - 2020 October 05
6469

6570
### Added
6671
- added `p2app4conos()` for rendering Conos to pagoda2 application
6772
- README edits
6873
- vignettes edits
6974

70-
## [0.1.3] - 2020-10-02
75+
## [0.1.3] - 2020 October 02
7176

7277
### Added
7378
- Makefile.win, Makevars.win
@@ -76,7 +81,7 @@
7681
### Changed
7782
- Now should (natively) install on Mac OS for all users
7883

79-
## [0.1.2] - 2020-09-24
84+
## [0.1.2] - 2020 September 24
8085

8186
### Added
8287

@@ -88,7 +93,7 @@
8893
- Added LICENSE (July 2020)
8994
- Changed `std::cout` to `Rcpp::Rcout` (July 2020)
9095

91-
## [0.1.1] - 2019-11-26
96+
## [0.1.1] - 2019 November 26
9297

9398
### Added
9499

@@ -103,7 +108,7 @@
103108
- Fixed problem with duplicated observations during t-SNE estimation
104109
- Added option `var.scale` to `calculatePcaReduction`, which allow to disable variance scaling on counts
105110

106-
## [0.1.0] - 2019-04-20
111+
## [0.1.0] - 2019 April 20
107112

108113
### Added
109114

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
Package: pagoda2
22
Title: Single Cell Analysis and Differential Expression
3-
Version: 1.0.7
3+
Version: 1.0.8
44
Authors@R: c(person("Nikolas","Barkas", email="nikolas_barkas@hms.harvard.edu", role="aut"), person("Viktor", "Petukhov", email="viktor.s.petuhov@ya.ru", role="aut"), person("Peter", "Kharchenko", email = "peter_kharchenko@hms.harvard.edu", role = "aut"), person("Simon", "Steiger", email = "simon.steiger@gmail.com", role = "ctb"), person("Evan", "Biederstedt", email="evan.biederstedt@gmail.com", role=c("cre", "aut")))
55
Description: Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. 'pagoda2' primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. 'pagoda2' was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the 'p2data' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the 'p2data' package is approximately 6 MB.
66
License: GPL-3

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,5 +101,5 @@ If you find `pagoda2` useful for your publication, please cite:
101101
```
102102
Nikolas Barkas, Viktor Petukhov, Peter Kharchenko and Evan
103103
Biederstedt (2021). pagoda2: Single Cell Analysis and Differential
104-
Expression. R package version 1.0.7.
104+
Expression. R package version 1.0.8.
105105
```

doc/pagoda2.walkthrough.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ r$plotEmbedding(type='PCA', show.legend=FALSE, mark.groups=TRUE, min.cluster.siz
102102

103103

104104
## ---- fig.height=6, fig.width=6-----------------------------------------------
105-
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50,verbose=FALSE)
105+
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50, verbose=FALSE)
106106
r$plotEmbedding(type='PCA', embeddingType='tSNE', show.legend=FALSE, mark.groups=TRUE, min.cluster.size=1, shuffle.colors=FALSE, font.size=3, alpha=0.3, title='clusters (tSNE)', plot.theme=theme_bw() + theme(plot.title = element_text(hjust = 0.5)))
107107

108108

doc/pagoda2.walkthrough.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -193,7 +193,7 @@ r$plotEmbedding(type='PCA', show.legend=FALSE, mark.groups=TRUE, min.cluster.siz
193193

194194
We next can construct and plot a tSNE embedding. (This can take some time to complete.)
195195
```{r, fig.height=6, fig.width=6}
196-
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50,verbose=FALSE)
196+
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50, verbose=FALSE)
197197
r$plotEmbedding(type='PCA', embeddingType='tSNE', show.legend=FALSE, mark.groups=TRUE, min.cluster.size=1, shuffle.colors=FALSE, font.size=3, alpha=0.3, title='clusters (tSNE)', plot.theme=theme_bw() + theme(plot.title = element_text(hjust = 0.5)))
198198
```
199199

doc/pagoda2.walkthrough.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -476,7 +476,7 @@ <h3>Part 2: Analysing Data with Pagoda2</h3>
476476

477477
<p>We next can construct and plot a tSNE embedding. (This can take some time to complete.)</p>
478478

479-
<pre><code class="r">r$getEmbedding(type=&#39;PCA&#39;, embeddingType=&#39;tSNE&#39;, perplexity=50,verbose=FALSE)
479+
<pre><code class="r">r$getEmbedding(type=&#39;PCA&#39;, embeddingType=&#39;tSNE&#39;, perplexity=50, verbose=FALSE)
480480
r$plotEmbedding(type=&#39;PCA&#39;, embeddingType=&#39;tSNE&#39;, show.legend=FALSE, mark.groups=TRUE, min.cluster.size=1, shuffle.colors=FALSE, font.size=3, alpha=0.3, title=&#39;clusters (tSNE)&#39;, plot.theme=theme_bw() + theme(plot.title = element_text(hjust = 0.5)))
481481
</code></pre>
482482

doc/pagoda2.walkthrough.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -327,7 +327,7 @@ r$plotEmbedding(type='PCA', show.legend=FALSE, mark.groups=TRUE, min.cluster.siz
327327
We next can construct and plot a tSNE embedding. (This can take some time to complete.)
328328

329329
```r
330-
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50,verbose=FALSE)
330+
r$getEmbedding(type='PCA', embeddingType='tSNE', perplexity=50, verbose=FALSE)
331331
r$plotEmbedding(type='PCA', embeddingType='tSNE', show.legend=FALSE, mark.groups=TRUE, min.cluster.size=1, shuffle.colors=FALSE, font.size=3, alpha=0.3, title='clusters (tSNE)', plot.theme=theme_bw() + theme(plot.title = element_text(hjust = 0.5)))
332332
```
333333

inst/rookServerDocs/js/aspectsTableViewer.js

Lines changed: 5 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ aspectsTableViewer.prototype.generateTables = function() {
108108
tooltip: 'Export Selected',
109109
handler: function(){
110110
var grid = Ext.getCmp('genesetsAspectTable');
111-
var csvContent = "data:text/csv;charset=utf-8\n";
111+
var csvContent = "data:text/csv; charset=utf-8,";
112112

113113
var columns = grid.columnManager.columns;
114114
var columnsCount = columns.length;
@@ -117,31 +117,24 @@ aspectsTableViewer.prototype.generateTables = function() {
117117
csvContent += columns[i].text + ",";
118118
}
119119
}
120-
csvContent = csvContent.substring(0, csvContent.length-1);
120+
csvContent = csvContent.substring(0, csvContent.length - 1);
121121
csvContent += "\r";
122122

123-
for (var j = 0; j<columnsCount; j++) {
124-
if(!columns[j].hidden){
125-
console.log(columns[j]);
126-
}
127-
}
128-
129123
var rows = grid.store.data.items;
130124
var rowsCount = rows.length;
131125

132126
for (var i = 0; i < rowsCount; i++) {
133127
var row = rows[i].data;
134-
for (var j = 1; j<columnsCount; j++) {
128+
for (var j = 0; j<columnsCount; j++) {
135129
if (!columns[j].hidden) {
136130
var value = row[columns[j].dataIndex];
137-
csvContent += "\"" + value + "\"" + ",";
131+
csvContent += value + ",";
138132
}
139133
}
140-
csvContent = csvContent.substring(0, csvContent.length-1);
134+
csvContent = csvContent.substring(0, csvContent.length - 1);
141135
csvContent += "\r";
142136
}
143137

144-
145138
var encodedUri = encodeURI(csvContent);
146139
var is_safari = navigator.userAgent.toLowerCase().indexOf('safari/') > -1;
147140

0 commit comments

Comments
 (0)