-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathnodes_sd3.py
467 lines (382 loc) · 20.1 KB
/
nodes_sd3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import torch
import folder_paths
import comfy.model_management as mm
import comfy.utils
import toml
import json
import time
import shutil
import shlex
script_directory = os.path.dirname(os.path.abspath(__file__))
from .sd3_train_network import Sd3NetworkTrainer
from .library import sd3_train_utils as sd3_train_utils
from .library.device_utils import init_ipex
init_ipex()
from .library import train_util
from .train_network import setup_parser as train_network_setup_parser
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class SD3ModelSelect:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"transformer": (folder_paths.get_filename_list("checkpoints"), ),
"clip_l": (folder_paths.get_filename_list("clip"), ),
"clip_g": (folder_paths.get_filename_list("clip"), ),
"t5": (folder_paths.get_filename_list("clip"), ),
},
"optional": {
"lora_path": ("STRING",{"multiline": True, "forceInput": True, "default": "", "tooltip": "pre-trained LoRA path to load (network_weights)"}),
}
}
RETURN_TYPES = ("TRAIN_SD3_MODELS",)
RETURN_NAMES = ("sd3_models",)
FUNCTION = "loadmodel"
CATEGORY = "FluxTrainer/SD3"
def loadmodel(self, transformer, clip_l, clip_g, t5, lora_path=""):
transformer_path = folder_paths.get_full_path("checkpoints", transformer)
clip_l_path = folder_paths.get_full_path("clip", clip_l)
clip_g_path = folder_paths.get_full_path("clip", clip_g)
t5_path = folder_paths.get_full_path("clip", t5)
sd3_models = {
"transformer": transformer_path,
"clip_l": clip_l_path,
"clip_g": clip_g_path,
"t5": t5_path,
"lora_path": lora_path
}
return (sd3_models,)
class InitSD3LoRATraining:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sd3_models": ("TRAIN_SD3_MODELS",),
"dataset": ("JSON",),
"optimizer_settings": ("ARGS",),
"output_name": ("STRING", {"default": "sd35_lora", "multiline": False}),
"output_dir": ("STRING", {"default": "sd35_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"network_dim": ("INT", {"default": 16, "min": 1, "max": 2048, "step": 1, "tooltip": "network dim"}),
"network_alpha": ("FLOAT", {"default": 16, "min": 0.0, "max": 2048.0, "step": 0.01, "tooltip": "network alpha"}),
"learning_rate": ("FLOAT", {"default": 1e-4, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}),
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}),
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"training_shift ": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "shift value for the training distribution of timesteps"}),
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}),
"blocks_to_swap": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "option for memory use reduction. The maximum number of blocks that can be swapped is 36 for SD3.5L and 22 for SD3.5M"}),
"fp8_base": ("BOOLEAN", {"default": False, "tooltip": "use fp8 for base model"}),
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "fp32", "tooltip": "the actual dtype training uses"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}),
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}),
"train_text_encoder": (['disabled', 'clip_l', 'clip_l_fp8', 'clip_l+T5', 'clip_l+T5_fp8'], {"default": 'disabled', "tooltip": "also train the selected text encoders using specified dtype, T5 can not be trained without clip_l"}),
"clip_l_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"clip_g_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"T5_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
"gradient_checkpointing": (["enabled", "disabled"], {"default": "enabled", "tooltip": "use gradient checkpointing"}),
},
"optional": {
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}),
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}),
"block_args": ("ARGS", {"default": "", "tooltip": "limit the blocks used in the LoRA"}),
"loss_args": ("ARGS", {"default": "", "tooltip": "loss args"}),
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS",)
RETURN_NAMES = ("network_trainer", "epochs_count", "args",)
FUNCTION = "init_training"
CATEGORY = "FluxTrainer/SD3"
def init_training(self, sd3_models, dataset, optimizer_settings, sample_prompts, output_name, attention_mode,
gradient_dtype, save_dtype, additional_args=None, resume_args=None, train_text_encoder='disabled',
block_args=None, gradient_checkpointing="enabled", prompt=None, extra_pnginfo=None, clip_l_lr=0, clip_g_lr=0, T5_lr=0, loss_args=None, **kwargs):
mm.soft_empty_cache()
output_dir = os.path.abspath(kwargs.get("output_dir"))
os.makedirs(output_dir, exist_ok=True)
total, used, free = shutil.disk_usage(output_dir)
required_free_space = 2 * (2**30)
if free <= required_free_space:
raise ValueError(f"Insufficient disk space. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB")
dataset_config = dataset["datasets"]
dataset_toml = toml.dumps(json.loads(dataset_config))
parser = train_network_setup_parser()
sd3_train_utils.add_sd3_training_arguments(parser)
if additional_args is not None:
print(f"additional_args: {additional_args}")
args, _ = parser.parse_known_args(args=shlex.split(additional_args))
else:
args, _ = parser.parse_known_args()
if kwargs.get("cache_latents") == "memory":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = False
elif kwargs.get("cache_latents") == "disk":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = True
kwargs["caption_dropout_rate"] = 0.0
kwargs["shuffle_caption"] = False
kwargs["token_warmup_step"] = 0.0
kwargs["caption_tag_dropout_rate"] = 0.0
else:
kwargs["cache_latents"] = False
kwargs["cache_latents_to_disk"] = False
if kwargs.get("cache_text_encoder_outputs") == "memory":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = False
elif kwargs.get("cache_text_encoder_outputs") == "disk":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = True
else:
kwargs["cache_text_encoder_outputs"] = False
kwargs["cache_text_encoder_outputs_to_disk"] = False
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
config_dict = {
"sample_prompts": prompts,
"save_precision": save_dtype,
"mixed_precision": "bf16",
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": sd3_models["transformer"],
"clip_l": sd3_models["clip_l"],
"clip_g": sd3_models["clip_g"],
"t5xxl": sd3_models["t5"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"network_module": ".networks.lora_sd3",
"dataset_config": dataset_toml,
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{save_dtype}",
"loss_type": "l2",
"t5xxl_max_token_length": 512,
"alpha_mask": dataset["alpha_mask"],
"network_train_unet_only": True if train_text_encoder == 'disabled' else False,
"fp8_base_unet": True if "fp8" in train_text_encoder else False,
"disable_mmap_load_safetensors": False,
}
attention_settings = {
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True},
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False}
}
config_dict.update(attention_settings.get(attention_mode, {}))
gradient_dtype_settings = {
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"},
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"}
}
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {}))
if train_text_encoder != 'disabled':
config_dict["text_encoder_lr"] = [clip_l_lr, clip_g_lr, T5_lr]
#network args
additional_network_args = []
if "T5" in train_text_encoder:
additional_network_args.append("train_t5xxl=True")
if block_args:
additional_network_args.append(block_args["include"])
# Handle network_args in args Namespace
if hasattr(args, 'network_args') and isinstance(args.network_args, list):
args.network_args.extend(additional_network_args)
else:
setattr(args, 'network_args', additional_network_args)
if gradient_checkpointing == "disabled":
config_dict["gradient_checkpointing"] = False
elif gradient_checkpointing == "enabled_with_cpu_offloading":
config_dict["gradient_checkpointing"] = True
config_dict["cpu_offload_checkpointing"] = True
else:
config_dict["gradient_checkpointing"] = True
if sd3_models["lora_path"]:
config_dict["network_weights"] = sd3_models["lora_path"]
config_dict.update(kwargs)
config_dict.update(optimizer_settings)
if loss_args:
config_dict.update(loss_args)
if resume_args:
config_dict.update(resume_args)
for key, value in config_dict.items():
setattr(args, key, value)
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json")
with open(saved_args_file_path, 'w') as f:
json.dump(vars(args), f, indent=4)
#workflow saving
metadata = {}
if extra_pnginfo is not None:
metadata.update(extra_pnginfo["workflow"])
saved_workflow_file_path = os.path.join(output_dir, f"{output_name}_workflow.json")
with open(saved_workflow_file_path, 'w') as f:
json.dump(metadata, f, indent=4)
#pass args to kohya and initialize trainer
with torch.inference_mode(False):
network_trainer = Sd3NetworkTrainer()
training_loop = network_trainer.init_train(args)
epochs_count = network_trainer.num_train_epochs
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, args)
class SD3TrainLoop:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"steps": ("INT", {"default": 1, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT",)
RETURN_NAMES = ("network_trainer", "steps",)
FUNCTION = "train"
CATEGORY = "FluxTrainer"
def train(self, network_trainer, steps):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
initial_global_step = network_trainer.global_step
target_global_step = network_trainer.global_step + steps
comfy_pbar = comfy.utils.ProgressBar(steps)
network_trainer.comfy_pbar = comfy_pbar
network_trainer.optimizer_train_fn()
while network_trainer.global_step < target_global_step:
steps_done = training_loop(
break_at_steps = target_global_step,
epoch = network_trainer.current_epoch.value,
)
# Also break if the global steps have reached the max train steps
if network_trainer.global_step >= network_trainer.args.max_train_steps:
break
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, network_trainer.global_step)
class SD3TrainLoRASave:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": False, "tooltip": "save the whole model state as well"}),
"copy_to_comfy_lora_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",)
RETURN_NAMES = ("network_trainer","lora_path", "steps",)
FUNCTION = "save"
CATEGORY = "FluxTrainer"
def save(self, network_trainer, save_state, copy_to_comfy_lora_folder):
import shutil
with torch.inference_mode(False):
trainer = network_trainer["network_trainer"]
global_step = trainer.global_step
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step)
trainer.save_model(ckpt_name, trainer.accelerator.unwrap_model(trainer.network), global_step, trainer.current_epoch.value + 1)
remove_step_no = train_util.get_remove_step_no(trainer.args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, remove_step_no)
trainer.remove_model(remove_ckpt_name)
if save_state:
train_util.save_and_remove_state_stepwise(trainer.args, trainer.accelerator, global_step)
lora_path = os.path.join(trainer.args.output_dir, ckpt_name)
if copy_to_comfy_lora_folder:
destination_dir = os.path.join(folder_paths.models_dir, "loras", "flux_trainer")
os.makedirs(destination_dir, exist_ok=True)
shutil.copy(lora_path, os.path.join(destination_dir, ckpt_name))
return (network_trainer, lora_path, global_step)
class SD3TrainEnd:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("STRING", "STRING", "STRING",)
RETURN_NAMES = ("lora_name", "metadata", "lora_path",)
FUNCTION = "endtrain"
CATEGORY = "FluxTrainer"
OUTPUT_NODE = True
def endtrain(self, network_trainer, save_state):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
network_trainer.metadata["ss_epoch"] = str(network_trainer.num_train_epochs)
network_trainer.metadata["ss_training_finished_at"] = str(time.time())
network = network_trainer.accelerator.unwrap_model(network_trainer.network)
network_trainer.accelerator.end_training()
network_trainer.optimizer_eval_fn()
if save_state:
train_util.save_state_on_train_end(network_trainer.args, network_trainer.accelerator)
ckpt_name = train_util.get_last_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as)
network_trainer.save_model(ckpt_name, network, network_trainer.global_step, network_trainer.num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
final_lora_name = str(network_trainer.args.output_name)
final_lora_path = os.path.join(network_trainer.args.output_dir, ckpt_name)
# metadata
metadata = json.dumps(network_trainer.metadata, indent=2)
training_loop = None
network_trainer = None
mm.soft_empty_cache()
return (final_lora_name, metadata, final_lora_path)
class SD3TrainValidationSettings:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}),
"width": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}),
"height": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}),
"guidance_scale": ("FLOAT", {"default": 4, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}),
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
},
}
RETURN_TYPES = ("VALSETTINGS", )
RETURN_NAMES = ("validation_settings", )
FUNCTION = "set"
CATEGORY = "FluxTrainer"
def set(self, **kwargs):
validation_settings = kwargs
print(validation_settings)
return (validation_settings,)
class SD3TrainValidate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"network_trainer": ("NETWORKTRAINER",),
},
"optional": {
"validation_settings": ("VALSETTINGS",),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "IMAGE",)
RETURN_NAMES = ("network_trainer", "validation_images",)
FUNCTION = "validate"
CATEGORY = "FluxTrainer"
def validate(self, network_trainer, validation_settings=None):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
params = (
network_trainer.current_epoch.value,
network_trainer.global_step,
validation_settings
)
network_trainer.optimizer_eval_fn()
with torch.inference_mode(False):
image_tensors = network_trainer.sample_images(*params)
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, (0.5 * (image_tensors + 1.0)).cpu().float(),)
NODE_CLASS_MAPPINGS = {
"SD3ModelSelect": SD3ModelSelect,
"InitSD3LoRATraining": InitSD3LoRATraining,
"SD3TrainValidationSettings": SD3TrainValidationSettings,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SD3ModelSelect": "SD3 Model Select",
"InitSD3LoRATraining": "Init SD3 LoRA Training",
"SD3TrainValidationSettings": "SD3 Train Validation Settings",
}