-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnode_flow_cutter.h
321 lines (260 loc) · 11.2 KB
/
node_flow_cutter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#ifndef NODE_FLOW_CUTTER_H
#define NODE_FLOW_CUTTER_H
#include "flow_cutter.h"
namespace flow_cutter{
//!
//! An expanded graph is a virtually expanded version of a symmetric input graph.
//! Expanded means that every original node v is subdivided into two nodes v_in and v_out.
//!
//! For each arc x->y two new inter arcs x_out -> y_in and y_in -> x_out are created
//! For each node x two new intra arcs x_out -> x_in and x_in -> x_out are created
//! Every in to out arc has capacity 1 and every out to in arc has capacity 0.
//!
namespace expanded_graph{
inline int expanded_node_count(int original_node_count){ return 2*original_node_count; }
inline int expanded_arc_count(int original_node_count, int original_arc_count){ return 2*(original_node_count+original_arc_count); }
inline int expanded_node_to_original_node(int x){ return x/2; }
inline int original_node_to_expanded_node(int x, bool is_out){ return 2*x+is_out; }
inline bool get_expanded_node_out_flag(int x){ return x&1; }
inline bool is_expanded_intra_arc(int x, int original_arc_count){ return x >= 2*original_arc_count; }
inline bool is_expanded_inter_arc(int x, int original_arc_count){ return x < 2*original_arc_count; }
inline bool get_expanded_arc_tail_out_flag(int x){return x&1;}
inline int expanded_inter_arc_to_original_arc(int x, int original_arc_count){ (void)original_arc_count; return x/2; }
inline int original_arc_to_expanded_inter_arc(int x, bool tail_out_flag, int original_arc_count){ return 2*x+tail_out_flag; }
inline int expanded_intra_arc_to_original_node(int x, int original_arc_count){ (void)original_arc_count; return x/2-original_arc_count; }
inline int original_node_to_expanded_intra_arc(int x, bool tail_out_flag, int original_arc_count){ return 2*(original_arc_count+x)+tail_out_flag; }
template<class OriginalTail>
struct Tail{
int original_node_count, original_arc_count;
OriginalTail original_tail;
int preimage_count()const{return expanded_arc_count(original_node_count, original_arc_count);}
int image_count()const{return expanded_node_count(original_node_count);}
int operator()(int a)const{
if(is_expanded_intra_arc(a, original_arc_count)){
return original_node_to_expanded_node(expanded_intra_arc_to_original_node(a, original_arc_count), get_expanded_arc_tail_out_flag(a));
}else{
return original_node_to_expanded_node(original_tail(expanded_inter_arc_to_original_arc(a, original_arc_count)), get_expanded_arc_tail_out_flag(a));
}
}
};
template<class OriginalTail>
Tail<OriginalTail>tail(int original_node_count, int original_arc_count, OriginalTail original_tail){
return {original_node_count, original_arc_count, std::move(original_tail)};
}
template<class OriginalHead>
struct Head{
int original_node_count, original_arc_count;
OriginalHead original_head;
int preimage_count()const{return expanded_arc_count(original_node_count, original_arc_count);}
int image_count()const{return expanded_node_count(original_node_count);}
int operator()(int a)const{
if(is_expanded_intra_arc(a, original_arc_count)){
return original_node_to_expanded_node(expanded_intra_arc_to_original_node(a, original_arc_count), !get_expanded_arc_tail_out_flag(a));
}else{
return original_node_to_expanded_node(original_head(expanded_inter_arc_to_original_arc(a, original_arc_count)), !get_expanded_arc_tail_out_flag(a));
}
}
};
template<class OriginalHead>
Head<OriginalHead>head(int original_node_count, int original_arc_count, OriginalHead original_head){
return {original_node_count, original_arc_count, std::move(original_head)};
}
template<class OriginalBackArc>
struct BackArc{
int original_node_count, original_arc_count;
OriginalBackArc original_back_arc;
int preimage_count()const{return expanded_arc_count(original_node_count, original_arc_count);}
int image_count()const{return expanded_arc_count(original_node_count, original_arc_count);}
int operator()(int a)const{
if(is_expanded_intra_arc(a, original_arc_count)){
return original_node_to_expanded_intra_arc(expanded_intra_arc_to_original_node(a, original_arc_count), !get_expanded_arc_tail_out_flag(a), original_arc_count);
}else{
return original_arc_to_expanded_inter_arc(original_back_arc(expanded_inter_arc_to_original_arc(a, original_arc_count)), !get_expanded_arc_tail_out_flag(a), original_arc_count);
}
}
};
template<class OriginalBackArc>
BackArc<OriginalBackArc>back_arc(int original_node_count, int original_arc_count, OriginalBackArc original_back_arc){
return {original_node_count, original_arc_count, std::move(original_back_arc)};
}
struct Capacity{
int original_node_count, original_arc_count;
int preimage_count()const{return expanded_arc_count(original_node_count, original_arc_count);}
int operator()(int a)const{
if(is_expanded_intra_arc(a, original_arc_count)){
return !get_expanded_arc_tail_out_flag(a);
}else{
return get_expanded_arc_tail_out_flag(a);
}
}
};
Capacity capacity(int original_node_count, int original_arc_count){
return {original_node_count, original_arc_count};
}
template<class OriginalArcWeight>
struct ArcWeight{
int original_node_count, original_arc_count;
OriginalArcWeight original_arc_weight;
int preimage_count()const{
return expanded_arc_count(original_node_count, original_arc_count);
}
int operator()(int a)const{
if(is_expanded_intra_arc(a, original_arc_count)){
return 0;
}else{
return original_arc_weight(expanded_inter_arc_to_original_arc(a, original_arc_count));
}
}
};
template<class OriginalArcWeight>
ArcWeight<OriginalArcWeight>arc_weight(int original_node_count, int original_arc_count, const OriginalArcWeight&original_back_arc){
return {original_node_count, original_arc_count, std::move(original_back_arc)};
}
template<class OriginalOutArc>
struct OutArcIter{
typedef typename std::decay<decltype(std::begin(std::declval<const OriginalOutArc>()(0)))>::type OriginalOutArcIter;
typedef int value_type;
typedef int difference_type;
typedef const int* pointer;
typedef const int& reference;
typedef std::forward_iterator_tag iterator_category;
OutArcIter(){}
OutArcIter(int intra_arc, bool node_out_flag, OriginalOutArcIter base_iter):
intra_arc(intra_arc), node_out_flag(node_out_flag), base_iter(base_iter){}
OutArcIter&operator++(){
if(intra_arc != -1)
intra_arc = -1;
else
++base_iter;
return *this;
}
OutArcIter operator++(int) {
OutArcIter tmp(*this);
operator++();
return tmp;
}
int operator*()const{
if(intra_arc != -1)
return intra_arc;
else
return 2*(*base_iter) + node_out_flag;
}
int dummy; // To whom ever defined the ackward operator-> semantics: Skrew you!
const int*operator->() const {
dummy = *this;
return &dummy;
}
int intra_arc;
bool node_out_flag;
OriginalOutArcIter base_iter;
friend bool operator==(OutArcIter l, OutArcIter r){
return l.base_iter == r.base_iter && l.intra_arc == r.intra_arc && l.node_out_flag == r.node_out_flag;
}
friend bool operator!=(OutArcIter l, OutArcIter r){
return !(l == r);
}
};
template<class OriginalOutArc>
struct OutArc{
int original_node_count, original_arc_count;
OriginalOutArc original_out_arc;
int preimage_count()const{return expanded_node_count(original_node_count);}
Range<OutArcIter<OriginalOutArc>> operator()(int x)const{
int original_x = expanded_node_to_original_node(x);
bool out_flag = get_expanded_node_out_flag(x);
auto r = original_out_arc(original_x);
return Range<OutArcIter<OriginalOutArc>>{
OutArcIter<OriginalOutArc>{original_node_to_expanded_intra_arc(original_x, out_flag, original_arc_count), out_flag, std::begin(r)},
OutArcIter<OriginalOutArc>{-1, out_flag, std::end(r)}
};
}
};
template<class OriginalOutArc>
OutArc<OriginalOutArc>out_arc(int original_node_count, int original_arc_count, OriginalOutArc original_out_arc){
return {original_node_count, original_arc_count, std::move(original_out_arc)};
}
template<class Tail, class Head, class BackArc, class ArcWeight, class OutArc>
Graph<
expanded_graph::Tail<Tail>,
expanded_graph::Head<Head>,
expanded_graph::BackArc<BackArc>,
expanded_graph::ArcWeight<ArcWeight>,
expanded_graph::Capacity,
expanded_graph::OutArc<OutArc>
>
make_graph(Tail tail, Head head, BackArc back_arc, ArcWeight arc_weight, OutArc out_arc){
int node_count = tail.image_count(), arc_count = tail.preimage_count();
return{
expanded_graph::tail(node_count, arc_count, std::move(tail)),
expanded_graph::head(node_count, arc_count, std::move(head)),
expanded_graph::back_arc(node_count, arc_count, std::move(back_arc)),
expanded_graph::arc_weight(node_count, arc_count, std::move(arc_weight)),
expanded_graph::capacity(node_count, arc_count),
expanded_graph::out_arc(node_count, arc_count, std::move(out_arc))
};
}
struct MixedCut{
std::vector<int>arcs, nodes;
};
inline
MixedCut expanded_cut_to_original_mixed_cut(const std::vector<int>&expanded_cut, int original_arc_count){
MixedCut original_cut;
for(auto x:expanded_cut){
if(is_expanded_inter_arc(x, original_arc_count)){
original_cut.arcs.push_back(expanded_inter_arc_to_original_arc(x, original_arc_count));
}else{
original_cut.nodes.push_back(expanded_intra_arc_to_original_node(x, original_arc_count));
}
}
return original_cut; // NRVO
}
struct Separator{
std::vector<int>sep;
int small_side_size;
};
template<class Tail, class Head, class FlowCutter>
Separator extract_original_separator(const Tail&tail, const Head&head, const FlowCutter&cutter){
int original_node_count = tail.image_count();
int original_arc_count = tail.preimage_count();
Separator sep;
for(auto x:cutter.get_current_cut()){
if(is_expanded_intra_arc(x, original_arc_count)){
sep.sep.push_back(expanded_intra_arc_to_original_node(x, original_arc_count));
}
}
int left_side_size = (cutter.get_current_smaller_cut_side_size()-sep.sep.size())/2;
int right_side_size = original_node_count - sep.sep.size() - left_side_size;
auto is_original_node_left = [&](int x){
return cutter.is_on_smaller_side(original_node_to_expanded_node(x, true));
};
for(auto x:cutter.get_current_cut()){
if(is_expanded_inter_arc(x, original_arc_count)){
auto lr = expanded_inter_arc_to_original_arc(x, original_arc_count);
auto l = tail(lr), r = head(lr);
if(is_original_node_left(r))
std::swap(l, r);
if(left_side_size > right_side_size){
sep.sep.push_back(l);
--left_side_size;
}else{
sep.sep.push_back(r);
--right_side_size;
}
}
}
sep.small_side_size = std::min(left_side_size, right_side_size);
std::sort(sep.sep.begin(), sep.sep.end());
sep.sep.erase(std::unique(sep.sep.begin(), sep.sep.end()), sep.sep.end());
return sep; // NVRO
}
inline
std::vector<SourceTargetPair>expand_source_target_pair_list(std::vector<SourceTargetPair>p){
for(auto&x:p){
x.source = original_node_to_expanded_node(x.source, false);
x.target = original_node_to_expanded_node(x.target, true);
}
return std::move(p);
}
}
}
#endif