|
3 | 3 | * mathematical functions and transformations. The \ref qlibs::ffmath can |
4 | 4 | * replace a default math floating-point library, delivering better performance |
5 | 5 | * with less code delivering a very close aproximations to the standard library. |
6 | | -* \ref qlibs::ffmath is Very fast and very small, it delivers FPU-like performance |
| 6 | +* \ref qlibs::ffmath is very fast and small, it delivers FPU-like performance |
7 | 7 | * in pure software. Where available, it even boosts the performance of an FPU for |
8 | 8 | * complex mathematical functions. |
9 | 9 | * |
|
61 | 61 | * - \ref qlibs::ffmath::pow() Computes the power raised to the base number |
62 | 62 | * |
63 | 63 | * @subsection qffmath_special Special functions |
| 64 | +* Most special functions are designed to prioritize precision over speed given |
| 65 | +* their applications, and their implementation closely follows that of the C++ |
| 66 | +* standard. qlibs::ffmath provides these special functions to ensure |
| 67 | +* compatibility with compilers that lack them. |
| 68 | +* |
64 | 69 | * - \ref qlibs::ffmath::erf() Computes the error function |
65 | 70 | * - \ref qlibs::ffmath::erfc() Computes the complementary error function |
66 | 71 | * - \ref qlibs::ffmath::rexp() Decomposes given floating point value into a normalized fraction and an integral power of two. |
|
79 | 84 | * - \ref qlibs::ffmath::ellint_1() Computes the incomplete elliptic integral of the first kind |
80 | 85 | * - \ref qlibs::ffmath::ellint_2() Computes the incomplete elliptic integral of the second kind |
81 | 86 | * - \ref qlibs::ffmath::ellint_3() Computes the incomplete elliptic integral of the third kind |
| 87 | +* - \ref qlibs::ffmath::expint() Computes the Exponential integral |
| 88 | +* - \ref qlibs::ffmath::hermite() Computes the (physicist's) Hermite polynomials |
| 89 | +* - \ref qlibs::ffmath::laguerre() Computes the non-associated Laguerre polynomials |
| 90 | +* - \ref qlibs::ffmath::legendre() Computes the unassociated Legendre polynomials |
| 91 | +* - \ref qlibs::ffmath::riemann_zeta() Computes the Riemann zeta function |
| 92 | +* - \ref qlibs::ffmath::sph_bessel() Computes the spherical Bessel function of the first kind |
| 93 | +* - \ref qlibs::ffmath::sph_neumann() Computes the spherical Bessel function of the second kind ( spherical Neumann function ) |
| 94 | +* - \ref qlibs::ffmath::cyl_bessel_i() Computes the regular modified cylindrical Bessel function |
| 95 | +* - \ref qlibs::ffmath::cyl_bessel_j() Computes the cylindrical Bessel function of the first kind |
| 96 | +* - \ref qlibs::ffmath::cyl_bessel_k() Computes the irregular modified cylindrical Bessel function |
| 97 | +* - \ref qlibs::ffmath::sph_legendre() Computes the spherical associated Legendre function |
82 | 98 | * |
83 | 99 | * @subsection qffmath_const Constants |
84 | 100 | * - \ref qlibs::ffmath::getInf() Returns positive infinity @c inf as a 32-bit floating point number |
|
0 commit comments