Replies: 2 comments 2 replies
-
|
Whaaaaaaaaaaaaaaaaaaaaaaaaaaaaaat?!?!? You can use Prodigy! That's awesome. |
Beta Was this translation helpful? Give feedback.
2 replies
-
|
Prodigy can't be used with LoRA+ because LoRA+ uses a different learning rate for lora up. If you remove Edit: |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I tried to use Prodigy to train Wan2.2, but it gave an error after one round of training.I printed the log and after one round of training, the step became 0.1.
Also, I'm using the Windows platform.
Parameter:
.\python\python.exe -m accelerate.commands.launch --num_cpu_threads_per_process 1 src/musubi_tuner/wan_train_network.py --task i2v-A14B ^
--dit models/stable_video_diffusion/wan2.2_i2v_high_noise_14B_fp16.safetensors ^
--vae models/vae/Wan2.1_VAE.pth ^
--t5 models/text_encoders/models_t5_umt5-xxl-enc-bf16.pth ^
--network_args loraplus_lr_ratio=4 ^
--dataset_config dataset/dataset_horse.toml ^
--flash_attn --split_attn ^
--mixed_precision fp16 --fp8_base --fp8_scaled ^
--optimizer_type prodigyopt.Prodigy ^
--learning_rate 1 ^
--optimizer_args weight_decay=0.01 betas=(0.9,0.99) ^
--lr_scheduler cosine_with_restarts --lr_scheduler_num_cycles 3 --lr_warmup_steps 100 ^
--gradient_checkpointing --gradient_accumulation_steps 1 ^
--max_data_loader_n_workers 8 --persistent_data_loader_workers ^
--network_module networks.lora_wan ^
--network_dim 16 --network_alpha 16 ^
--network_dropout 0.05 ^
--timestep_sampling shift --discrete_flow_shift 3.0 ^
--max_train_epochs 100 --save_every_n_epochs 10 ^
--seed 5 ^
--output_dir output ^
--output_name WAN2.2-HighNoise_Horse ^
--preserve_distribution_shape ^
--min_timestep 900 --max_timestep 1000 ^
--blocks_to_swap 30 ^
--log_with tensorboard ^
--logging_dir output/wan_logs ^
--save_state --save_state_on_train_end
Error:
File "I:\AI\musubi-tuner\python\Lib\site-packages\prodigyopt\prodigy.py", line 152, in step raise RuntimeError(f"Setting different lr values in different parameter groups is only supported for values of 0")
Beta Was this translation helpful? Give feedback.
All reactions