-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpyarrow_generate_data.py
279 lines (206 loc) · 7.62 KB
/
pyarrow_generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from datetime import date, datetime, timedelta
from decimal import Decimal
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.feather as feather
def fixed_size_list_array() -> pa.Array:
coords = pa.array([1, 2, 3, 4, 5, 6], type=pa.uint8())
return pa.FixedSizeListArray.from_arrays(coords, 2)
def struct_array() -> pa.Array:
x = pa.array([1, 2, 3], type=pa.float64())
y = pa.array([5, 6, 7], type=pa.float64())
return pa.StructArray.from_arrays([x, y], ["x", "y"])
def binary_array() -> pa.Array:
arr = pa.array(np.array([b"a", b"ab", b"abc"]))
assert isinstance(arr, pa.BinaryArray)
return arr
def large_binary_array() -> pa.Array:
# For some reason you can't pass pa.large_binary() directly into pa.array, you need
# to upcast from an existing binary array
small_arr = pa.array(np.array([b"a", b"ab", b"abc"]), type=pa.binary())
large_arr = small_arr.cast(pa.large_binary())
assert isinstance(large_arr, pa.LargeBinaryArray)
return large_arr
def fixed_size_binary_array() -> pa.Array:
# TODO: don't know how to construct this with pyarrow?
arr = pa.array(np.array([b"a", b"b", b"c"]))
assert isinstance(arr, pa.FixedSizeBinaryArray)
return arr
def string_array() -> pa.Array:
arr = pa.StringArray.from_pandas(["a", "foo", "barbaz"])
assert isinstance(arr, pa.StringArray)
return arr
def large_string_array() -> pa.Array:
arr = pa.array(["a", "foo", "barbaz"], type=pa.large_string())
assert isinstance(arr, pa.LargeStringArray)
return arr
def boolean_array() -> pa.Array:
arr = pa.BooleanArray.from_pandas([True, False, True])
assert isinstance(arr, pa.BooleanArray)
return arr
def null_array() -> pa.Array:
arr = pa.NullArray.from_pandas([None, None, None])
assert isinstance(arr, pa.NullArray)
return arr
def list_array() -> pa.Array:
values = pa.array([1, 2, 3, 4, 5, 6], type=pa.uint8())
offsets = pa.array([0, 1, 3, 6], type=pa.int32())
arr = pa.ListArray.from_arrays(offsets, values)
assert isinstance(arr, pa.ListArray)
return arr
def large_list_array() -> pa.Array:
values = pa.array([1, 2, 3, 4, 5, 6], type=pa.uint8())
offsets = pa.array([0, 1, 3, 6], type=pa.int64())
arr = pa.LargeListArray.from_arrays(offsets, values)
assert isinstance(arr, pa.LargeListArray)
return arr
def decimal128_array() -> pa.Array:
arr = pa.Decimal128Array.from_pandas(
[Decimal("1.23"), Decimal("2.67"), Decimal("4.93")], type=pa.decimal128(10, 3)
)
assert isinstance(arr, pa.Decimal128Array)
return arr
def date32_array() -> pa.Array:
arr = pa.Date32Array.from_pandas(
[date(2021, 1, 3), date(2021, 5, 6), date(2021, 8, 9)]
)
assert isinstance(arr, pa.Date32Array)
return arr
def date64_array() -> pa.Array:
arr = pa.Date64Array.from_pandas(
[date(2021, 1, 3), date(2021, 5, 6), date(2021, 8, 9)], type=pa.date64()
)
assert isinstance(arr, pa.Date64Array)
return arr
def timestamp_array() -> pa.Array:
arr = pa.TimestampArray.from_pandas(
[datetime.now(), datetime.now(), datetime.now()],
type=pa.timestamp("s", tz="America/New_York"),
)
assert isinstance(arr, pa.TimestampArray)
assert arr.type.unit == "s"
assert arr.type.tz == "America/New_York"
return arr
def duration_array() -> pa.Array:
arr = pa.DurationArray.from_pandas(
[
pd.Timedelta("2d"),
pd.Timedelta("1d"),
pd.Timedelta("1w"),
]
)
assert isinstance(arr, pa.DurationArray)
assert arr.type.unit == "us"
return arr
def interval_array() -> pa.Array:
val = timedelta(
days=1, seconds=1, microseconds=1, milliseconds=1, minutes=1, hours=1, weeks=1
)
arr = pa.array([val, val, val], pa.month_day_nano_interval())
assert isinstance(arr, pa.MonthDayNanoIntervalArray)
return arr
def nullable_int() -> pa.Array:
# True means null
mask = [True, False, True]
arr = pa.array([1, 2, 3], type=pa.uint8(), mask=mask)
assert isinstance(arr, pa.UInt8Array)
assert not arr[0].is_valid
return arr
def sparse_union_array() -> pa.Array:
"""Generate a sparse union array
This is derived from the example here https://arrow.apache.org/docs/python/data#union-arrays
"""
# First child array
xs = pa.array([5, 6, 7])
# Second child array
ys = pa.array([False, False, True])
# Type mapping
types = pa.array([0, 1, 1], type=pa.int8())
# Union array
union_arr = pa.UnionArray.from_sparse(types, [xs, ys])
assert isinstance(union_arr, pa.UnionArray)
assert isinstance(union_arr.type, pa.SparseUnionType)
assert union_arr[0].as_py() == 5
assert union_arr[1].as_py() is False
assert union_arr[2].as_py() is True
return union_arr
def dense_union_array() -> pa.Array:
"""Generate a dense union array
This is derived from the example here https://arrow.apache.org/docs/python/data#union-arrays
"""
# First child array
xs = pa.array([5])
# Second child array
ys = pa.array([False, True])
# Type mapping
types = pa.array([0, 1, 1], type=pa.int8())
# Offsets array
offsets = pa.array([0, 0, 1], type=pa.int32())
# Union array
union_arr = pa.UnionArray.from_dense(types, offsets, [xs, ys])
assert isinstance(union_arr, pa.UnionArray)
assert isinstance(union_arr.type, pa.DenseUnionType)
assert union_arr[0].as_py() == 5
assert union_arr[1].as_py() is False
assert union_arr[2].as_py() is True
return union_arr
class MyExtensionType(pa.ExtensionType):
"""
Refer to https://arrow.apache.org/docs/python/extending_types.html for
implementation details
"""
def __init__(self):
pa.ExtensionType.__init__(self, pa.uint8(), "extension_name")
def __arrow_ext_serialize__(self):
# since we don't have a parameterized type, we don't need extra
# metadata to be deserialized
return b"extension_metadata"
@classmethod
def __arrow_ext_deserialize__(cls, storage_type, serialized):
# return an instance of this subclass given the serialized
# metadata.
return MyExtensionType()
pa.register_extension_type(MyExtensionType())
def extension_array() -> pa.Array:
arr = pa.array([1, 2, 3], type=MyExtensionType())
assert isinstance(arr, pa.ExtensionArray)
return arr
def table() -> pa.Table:
return pa.table(
{
"fixedsizelist": fixed_size_list_array(),
"struct": struct_array(),
"binary": binary_array(),
"string": string_array(),
"boolean": boolean_array(),
"null": null_array(),
"list": list_array(),
"extension": extension_array(),
"decimal128": decimal128_array(),
"date32": date32_array(),
"date64": date64_array(),
"timestamp": timestamp_array(),
"nullable_int": nullable_int(),
"sparse_union": sparse_union_array(),
"dense_union": dense_union_array(),
"duration": duration_array(),
"interval": interval_array(),
}
)
def large_table() -> pa.Table:
# Important: the order of these columns cannot change
return pa.table(
{
"large_binary": large_binary_array(),
"large_string": large_string_array(),
"large_list": large_list_array(),
}
)
def main():
feather.write_feather(table(), "table.arrow", compression="uncompressed")
feather.write_feather(
large_table(), "large_table.arrow", compression="uncompressed"
)
if __name__ == "__main__":
main()