-
Couldn't load subscription status.
- Fork 61
Description
The pipeline runs fine with either backsub and no --viz false, or without backsub and --viz true. When running both backsub and minerva visualization, the error happens as below and the ome tiff generated is incomplete.
ERROR ~ Error executing process > 'viz:autominerva (1)'
Caused by:
Processviz:autominerva (1)terminated with an error exit status (1)Command executed:
python /app/story.py --in rack-01-well-A01-roi-001-exp-1_backsub.ome.tif --m markers_bs.csv --out story.json
python /app/minerva-author/src/save_exhibit_pyramid.py rack-01-well-A01-roi-001-exp-1_backsub.ome.tif story.json rack-01-well-A01-roi-001-exp-1_backsubCommand exit status:
1Command output:
Using marker names from markers_bs.csvCommand error:
opening image: rack-01-well-A01-roi-001-exp-1_backsub.ome.tif
reading metadata
WARNING: Could not read OME metadata. Story will use generic channel names and
the scale bar will be omitted.
analyzing channel 1/38
Using marker names from markers_bs.csv
Traceback (most recent call last):
File "/app/story.py", line 159, in
main(in_path, out_path, vars(args)['m'])
File "/app/story.py", line 124, in main
vmin, vmax = auto_threshold(img)
File "/app/story.py", line 24, in auto_threshold
gmm.fit(img_log.reshape((-1,1)))
File "/usr/local/lib/python3.9/site-packages/sklearn/mixture/_base.py", line 181, in fit
self.fit_predict(X, y)
File "/usr/local/lib/python3.9/site-packages/sklearn/base.py", line 1151, in wrapper
return fit_method(estimator, *args, **kwargs)
File "/usr/local/lib/python3.9/site-packages/sklearn/mixture/_base.py", line 212, in fit_predict
X = self._validate_data(X, dtype=[np.float64, np.float32], ensure_min_samples=2)
File "/usr/local/lib/python3.9/site-packages/sklearn/base.py", line 604, in _validate_data
out = check_array(X, input_name="X", **check_params)
File "/usr/local/lib/python3.9/site-packages/sklearn/utils/validation.py", line 969, in check_array
raise ValueError(
ValueError: Found array with 0 sample(s) (shape=(0, 1)) while a minimum of 2 is required by GaussianMixture
And below is the params.yml I used:
workflow:
start-at: background
stop-at: downstream
downstream: scimap
viz: true
segmentation: mesmer
segmentation-channel: 1 6
segmentation-recyze: false
background: true
background-method: backsub