-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
279 lines (222 loc) · 9.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
from tqdm import tqdm
import shutil
import time
from config import get_args
from preprocess import load_data
from model import mixnet_s, mixnet_m, mixnet_l
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# reference,
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
# Thank you.
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, *meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def print(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(model, train_loader, optimizer, criterion, epoch, args, logger):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1, top5,
prefix="Epoch: [{}]".format(epoch))
model.train()
end = time.time()
for i, (data, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.cuda:
data = data.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(data)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
top5.update(acc5[0], data.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_interval == 0:
progress.print(i)
def eval(model, val_loader, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5,
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (data, target) in enumerate(val_loader):
if args.cuda is not None:
data = data.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(data)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
top5.update(acc5[0], data.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_interval == 0:
progress.print(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg
def get_model_parameters(model):
total_parameters = 0
for layer in list(model.parameters()):
layer_parameter = 1
for l in list(layer.size()):
layer_parameter *= l
total_parameters += layer_parameter
return total_parameters
def main(args, logger):
train_loader, test_loader = load_data(args)
if args.dataset == 'CIFAR10':
num_classes = 10
elif args.dataset == 'CIFAR100':
num_classes = 100
elif args.dataset == 'IMAGENET':
num_classes = 1000
print('Model name :: {}, Dataset :: {}, Num classes :: {}'.format(args.model_name, args.dataset, num_classes))
if args.model_name == 's':
model = mixnet_s(num_classes=num_classes, dataset=args.dataset)
elif args.model_name == 'm':
model = mixnet_m(num_classes=num_classes, dataset=args.dataset)
elif args.model_name == 'l':
model = mixnet_l(num_classes=num_classes, dataset=args.dataset)
if args.pretrained_model:
filename = 'best_model_' + str(args.dataset) + '_' + str(args.model_name) + '_ckpt.tar'
print('filename :: ', filename)
file_path = os.path.join('./checkpoint', filename)
checkpoint = torch.load(file_path)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
best_acc5 = checkpoint['best_acc5']
model_parameters = checkpoint['parameters']
print('Load model, Parameters: {0}, Start_epoch: {1}, Acc1: {2}, Acc5: {3}'.format(model_parameters, start_epoch, best_acc1, best_acc5))
logger.info('Load model, Parameters: {0}, Start_epoch: {1}, Acc1: {2}, Acc5: {3}'.format(model_parameters, start_epoch, best_acc1, best_acc5))
else:
start_epoch = 1
best_acc1 = 0.0
best_acc5 = 0.0
if args.cuda:
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.cuda()
print("Number of model parameters: ", get_model_parameters(model))
logger.info("Number of model parameters: {0}".format(get_model_parameters(model)))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2, eta_min=0.001)
for epoch in range(start_epoch, args.epochs + 1):
# adjust_learning_rate(optimizer, epoch, args)
train(model, train_loader, optimizer, criterion, epoch, args, logger)
acc1, acc5 = eval(model, test_loader, criterion, args)
lr_scheduler.step()
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if is_best:
best_acc5 = acc5
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
filename = 'model_' + str(args.dataset) + '_' + str(args.model_name) + '_ckpt.tar'
print('filename :: ', filename)
parameters = get_model_parameters(model)
if torch.cuda.device_count() > 1:
save_checkpoint({
'epoch': epoch,
'arch': args.model_name,
'state_dict': model.module.state_dict(),
'best_acc1': best_acc1,
'best_acc5': best_acc5,
'optimizer': optimizer.state_dict(),
'parameters': parameters,
}, is_best, filename)
else:
save_checkpoint({
'epoch': epoch,
'arch': args.model_name,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'best_acc5': best_acc5,
'optimizer': optimizer.state_dict(),
'parameters': parameters,
}, is_best, filename)
print(" Test best acc1:", best_acc1, " acc1: ", acc1, " acc5: ", acc5)
def save_checkpoint(state, is_best, filename):
file_path = os.path.join('./checkpoint', filename)
torch.save(state, file_path)
best_file_path = os.path.join('./checkpoint', 'best_' + filename)
if is_best:
print('best Model Saving ...')
shutil.copyfile(file_path, best_file_path)
if __name__ == '__main__':
args, logger = get_args()
main(args, logger)