-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpreprocess.py
142 lines (123 loc) · 4.49 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from torchvision import datasets, transforms
import os
def load_data(args):
print('Load Dataset :: {}'.format(args.dataset))
if args.dataset == 'CIFAR10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616)
)
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616)
)
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=False, transform=transform_test),
batch_size=100,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'CIFAR100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.5071, 0.4865, 0.4409),
std=(0.2673, 0.2564, 0.2762)
),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.5071, 0.4865, 0.4409),
std=(0.2673, 0.2564, 0.2762)
),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=False, transform=transform_test),
batch_size=100,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'MNIST':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.1307,),
std=(0.3081,)
)
])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transform),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transform),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'IMAGENET':
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
# Check class labels
# print(train_dataset.classes)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler
)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True
)
return train_loader, test_loader